12,916 research outputs found

    Nilpotent Bases for a Class of Non-Integrable Distributions with Applications to Trajectory Generation for Nonholonomic Systems

    Get PDF
    This paper develops a constructive method for finding a nilpotent basis for a special class of smooth nonholonomic distributions. The main tool is the use of the Goursat normal form theorem which arises in the study of exterior differential systems. The results are applied to the problem of finding a set of nilpotent input vector fields for a nonholonomic control system, which can then used to construct explicit trajectories to drive the system between any two points. A kinematic model of a rolling penny is used to illustrate this approach. The methods presented here extend previous work using "chained form" and cast that work into a coordinate-free setting

    A Town Meeting on Energy : Prepared for Interior Alaskans

    Get PDF
    On March 26, 1977, an all-day Town Meeting on Energy was held at the Hutchison Career Development Center on Geist Road in Fairbanks, Alaska. This event was sponsored by the Alaska Humanities Forum in cooperation with the Fairbanks North Star Borough School District; the Institute of Water Resources at the University of Alaska, Fairbanks; and the Fairbanks Town and Village Association. This publication reports the activities during and the information resulting from this town meeting.Published through a grant from the Alaska Humanities Forum under the auspicies of the National Endowment for the Humanities

    Agreement Problems in Networks with Directed Graphs and Switching Topology

    Get PDF
    In this paper, we provide tools for convergence and performance analysis of an agreement protocol for a network of integrator agents with directed information flow. Moreover, we analyze algorithmic robustness of this consensus protocol for the case of a network with mobile nodes and switching topology. We establish a connection between the Fiedler eigenvalue of the graph Laplacian and the performance of this agreement protocol. We demostrate that a class of directed graphs, called balanced graphs, have a crucial role in solving average-consensus problems. Based on the properties of balanced graphs, a group disagreement function (i.e. Lyapunov function) is proposed for convergence analysis of this agreement protocol for networks with directed graphs. This group disagreement function is later used for convergence analysis for the agreement problem in networks with switching topology. We provide simulation results that are consistent with our theoretical results and demonstrate the effectiveness of the proposed analytical tools

    Quantitative Performance Bounds in Biomolecular Circuits due to Temperature Uncertainty

    Get PDF
    Performance of biomolecular circuits is affected by changes in temperature, due to its influence on underlying reaction rate parameters. While these performance variations have been estimated using Monte Carlo simulations, how to analytically bound them is generally unclear. To address this, we apply control-theoretic representations of uncertainty to examples of different biomolecular circuits, developing a framework to represent uncertainty due to temperature. We estimate bounds on the steady-state performance of these circuits due to temperature uncertainty. Through an analysis of the linearised dynamics, we represent this uncertainty as a feedback uncertainty and bound the variation in the magnitude of the input-output transfer function, providing a estimate of the variation in frequency-domain properties. Finally, we bound the variation in the time trajectories, providing an estimate of variation in time-domain properties. These results should enable a framework for analytical characterisation of uncertainty in biomolecular circuit performance due to temperature variation and may help in estimating relative performance of different controllers

    Real-valued average consensus over noisy quantized channels

    Get PDF
    This paper concerns the average consensus problem with the constraint of quantized communication between nodes. A broad class of algorithms is analyzed, in which the transmission strategy, which decides what value to communicate to the neighbours, can include various kinds of rounding, probabilistic quantization, and bounded noise. The arbitrariness of the transmission strategy is compensated by a feedback mechanism which can be interpreted as a self-inhibitory action. The result is that the average of the nodes state is not conserved across iterations, and the nodes do not converge to a consensus; however, we show that both errors can be made as small as desired. Bounds on these quantities involve the spectral properties of the graph and can be proved by employing elementary techniques of LTI systems analysis

    A group-theoretic approach to formalizing bootstrapping problems

    Get PDF
    The bootstrapping problem consists in designing agents that learn a model of themselves and the world, and utilize it to achieve useful tasks. It is different from other learning problems as the agent starts with uninterpreted observations and commands, and with minimal prior information about the world. In this paper, we give a mathematical formalization of this aspect of the problem. We argue that the vague constraint of having "no prior information" can be recast as a precise algebraic condition on the agent: that its behavior is invariant to particular classes of nuisances on the world, which we show can be well represented by actions of groups (diffeomorphisms, permutations, linear transformations) on observations and commands. We then introduce the class of bilinear gradient dynamics sensors (BGDS) as a candidate for learning generic robotic sensorimotor cascades. We show how framing the problem as rejection of group nuisances allows a compact and modular analysis of typical preprocessing stages, such as learning the topology of the sensors. We demonstrate learning and using such models on real-world range-finder and camera data from publicly available datasets

    Frequency-Weighted Model Reduction with Applications to Structured Models

    Get PDF
    In this paper, a frequency-weighted extension of a recently proposed model reduction method for linear systems is presented. The method uses convex optimization and can be used both with sample data and exact models. We also obtain bounds on the frequency-weighted error. The method is combined with a rank-minimization heuristic to approximate multiinput– multi-output systems.We also present two applications— environment compensation and simplification of interconnected models — where we argue the proposed methods are useful
    corecore