35,486 research outputs found

    Metal spar/superhybrid shell composite fan blades

    Get PDF
    The use of superhybrid materials in the manufacture and testing of large fan blades is analyzed. The FOD resistance of large metal spar/superhybrid fan blades is investigated. The technical effort reported was comprised of: (1) preliminary blade design; (2) detailed analysis of two selected superhybrid blade designs; (3) manufacture of two process evaluation blades and destructive evaluation; and (4) manufacture and whirligig testing of six prototype superhybrid blades

    Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3

    Full text link
    Galaxies are thought to be fed by the continuous accretion of intergalactic gas, but direct observational evidence has been elusive. The accreted gas is expected to orbit about the galaxy's halo, delivering not just fuel for star-formation but also angular momentum to the galaxy, leading to distinct kinematic signatures. Here we report observations showing these distinct signatures near a typical distant star-forming galaxy where the gas is detected using a background quasar passing 26 kpc from the host. Our observations indicate that gas accretion plays a major role in galaxy growth since the estimated accretion rate is comparable to the star-formation rate.Comment: 33 pages, 8 figures, version matching the proofed tex

    Halo gas cross sections and covering fractions of MgII absorption selected galaxies

    Get PDF
    We examine halo gas cross sections and covering fractions, fc, of intermediate-redshift Mg II absorption selected galaxies. We computed statistical absorber halo radii, Rx, using current values of dN/dz and Schechter luminosity function parameters, and have compared these values to the distribution of impact parameters and luminosities from a sample of 37 galaxies. For equivalent widths Wr(2796) ≥ 0.3 Å, we find 43 ≤ Rx ≤ 88 kpc, depending on the lower luminosity cutoff and the slope, β, of the Holmberg-like luminosity scaling, R ∝ α L^β . The observed distribution of impact parameters, D, are such that several absorbing galaxies lie at D > Rx and several non-absorbing galaxies lie at D ~ 0.5 for our sample. Moreover, the data suggest that halo radii of Mg II absorbing galaxies do not follow a luminosity scaling with β in the range of 0.2–0.28, if fc = 1 as previously reported. However, provided fc ~ 0.5, we find that halo radii can remain consistent with a Holmberg-like luminosity relation with β ≃ 0.2 and R∗ = Rx/√(fc) ~ 110 kpc. No luminosity scaling (β = 0) is also consistent with the observed distribution of impact parameters if fc ≤ 0.37. The data support a scenario in which gaseous halos are patchy and likely have non-symmetric geometric distributions about the galaxies. We suggest that halo gas distributions may not be governed primarily by galaxy mass/luminosity but also by stochastic processes local to the galaxy

    The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the delta Scuti star HD 187547

    Get PDF
    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in delta Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of `pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar delta Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.Comment: 8 pages, 4 figures, accepted to Ap

    Abundance Uncertainties Obtained With the PizBuin Framework For Monte Carlo Reaction Rate Variations

    Get PDF
    Uncertainties in nucleosynthesis models originating from uncertainties in astrophysical reaction rates were estimated in a Monte Carlo variation procedure. Thousands of rates were simultaneously varied within individual, temperature-dependent errors to calculate their combined effect on final abundances. After a presentation of the method, results from application to three different nucleosynthesis processes are shown: the γ\gamma-process and the s-process in massive stars, and the main s-process in AGB stars (preliminary results). Thermal excitation of nuclei in the stellar plasma and the combined action of several reactions increase the final uncertainties above the level of the experimental errors. The total uncertainty, on the other hand, remains within a factor of two even in processes involving a large number of unmeasured rates, with some notable exceptions for nuclides whose production is spread over several stellar layers and for s-process branchings.Comment: 8 pages, 4 figures; Proceedings of OMEG 2017, Daejeon, Korea, June 27-30, 2017; to appear in AIP Conf. Pro

    Suppression of Subsynchronous Vibration in the SSME HPFTP

    Get PDF
    Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) hot-fire dynamic data evaluation and rotordynamic analysis both confirm that two of the most significant turbopump attributes in determining susceptibility to subsynchronous vibration are impeller interstage seal configuration and rotor sideload resulting from turbine turnaround duct configuration and hot gas manifold. Recent hot-fire testing has provided promising indications that the incorporation of roughened damping seals at the impeller interstages may further increase the stability margin of this machine. A summary of the analysis which led to the conclusion that roughened seals would enhance the stability margin is presented along with a correlation of the analysis with recent test data

    The Nature of the Compact/Symmetric Near-IR Continuum Source in 4C 40.36

    Get PDF
    Using NICMOS on HST, we have imaged the emission-line nebulae and the line-free continuum in 4C 40.36, a ultra-steep spectrum FR II radio galaxy at z=2.269. The line-free continuum was found to be extremely compact and symmetric while the emission-line nebulae seen in H-alpha+[N II] show very clumpy structures spreading almost linearly over 16 kpc. However, this linear structure is clearly misaligned from the radio axis. The SED of the line-free continuum is very flat, suggesting that if the continuum emission is produced by a single source, it is likely to be a young bursting stellar population or scattered AGN light. However, because of the lack of a line-free optical image with a comparable spatial resolution, we cannot exclude the possibility that the observed SED is a composite of a young blue population and an old red population.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Hy-Redshift Universe: Galaxy Formation and Evolution at High Redshift", eds. A.J.Bunker and W. J. M. van Breuge

    The Local Radio-IR Relation in M51

    Get PDF
    We observed M51 at three frequencies, 1.4 GHz (20 cm), 4.9 GHz (6 cm), and 8.4 GHz (3.6 cm), with the Very Large Array and the Effelsberg 100 m telescope to obtain the highest quality radio continuum images of a nearby spiral galaxy. These radio data were combined with deconvolved Spitzer IRAC 8 μm and MIPS 24 μm images to search for and investigate local changes in the radio-IR correlation. Utilizing wavelet decomposition, we compare the distribution of the radio and IR emission on spatial scales between 200 pc and 30 kpc. We show that the radio-IR correlation is not uniform across the galactic disk. It presents a complex behavior with local extrema corresponding to various galactic structures, such as complexes of H II regions, spiral arms, and interarm filaments, indicating that the contribution of the thermal and non-thermal radio emission is a strong function of environment. In particular, the relation of the 24 μm and 20 cm emission presents a linear relation within the spiral arms and globally over the galaxy, while it deviates from linearity in the interarm and outer regions as well in the inner region, with two different behaviors: it is sublinear in the interarm and outer region and overlinear in the central 3.5 kpc. Our analysis suggests that the changes in the radio/IR correlation reflect variations of interstellar medium properties between spiral arms and interarm region. The good correlation in the spiral arms implies that 24 μm and 20 cm are tracing recent star formation, while a change in the dust opacity, "Cirrus" contribution to the IR emission and/or the relation between the magnetic field strength and the gas density can explain the different relations found in the interarm, outer, and inner regions
    corecore