6 research outputs found

    EXPLORING OPTIONS FOR REAL-TIME WATER QUALITY MONITORING WITHIN GREAT LAKES PORTS

    No full text
    This technical report presents findings from the exploration of available environmental monitoring sensors, the piloting experience of long-term field deployment of the Proteus multiparameter sonde developed by Proteus Instruments, and the development of an accessible platform for viewing real-time data in support of uptake avoidance best management practices as defined by the U.S. Environmental Protection Agency’s 2013 Vessel General Permit. Project staff conducted a literature review and investigation of commercially available sensors and selected an instrument that consists of a multiparameter sonde—able to measure turbidity, chlorophyll-a, phycocyanin, and total coliform bacteria—, telemetry system, and solar panel. Long-term deployment of the Proteus began in April 2022 and ended in October 2022 at the Montreal Pier Testing Facility located on the Duluth-Superior Harbor in Superior, Wisconsin, USA. Data collected from the multiparameter sonde was transmitted and stored on Outpost.com and real-time data was made publicly available using Web AppBuilder for ArcGIS. This piloting experience has shown promise to provide real-time data in support of uptake avoidance practices

    FASTBALLAST

    No full text
    This technical report presents findings from bench-scale verification tests evaluating the performance of the FastBallast compliance monitoring device in freshwater. FastBallast was developed by Chelsea Technologies Ltd. of Surrey, UK. The evaluation of the FastBallast compliance monitoring device began in August 2020 and ended in December 2020 at the Lake Superior Research Institute (LSRI) of the University of Wisconsin-Superior (UWS) in Superior, Wisconsin, USA. The FastBallast device employs Single Turnover Active Fluorometry (STAF) to rapidly quantify living organisms in ballast water samples in the ≥10 µm and <50 µm (nominally protists) regulated size class, providing an indication of compliance or exceedance of the International Maritime Organization (IMO) International Convention for the Control and Management of Ships’ Ballast Water and Sediments Regulation D-2 Ballast Water Performance Standard (2004). Verification testing composed of three phases in which results using the FastBallast device were compared to results using microscopic methods. Phase I testing was completed in two water types with laboratory-cultured organisms in the protist regulated size class, utilizing the single-celled protist Haematococcus pluvialis and colonial protist Scenedesmus quadricauda. Phase II testing was completed using naturally occurring Great Lakes organisms in the Duluth-Superior Harbor of Lake Superior. Phase III testing was completed using Duluth-Superior harbor water an ambient organism before and after treatment with a ballast water treatment (BWT) technology during three land-based trials. Data from all phases were analyzed for precision, accuracy, and reliability. Quantification/detection limits were calculated using data from Phase I testing. Phase I testing showed that FastBallast was effective at quantifying single-celled protists but was less accurate at counting colonial protists. Increased turbidity and carbon content slightly impacted FastBallast results, however, both water types displayed strong correlations to microscopic counts. FastBallast results were lower than microscopic counts in all trials of Phase I. Phase II testing showed strong correlations between the FastBallast results and microscopic results of protists collected from the Duluth-Superior Harbor, however the counts reported by FastBallast were 4 to 10 times greater than the microscopic counts. Phase III testing showed FastBallast accurately measured uptake and treated discharge water from samples collected during a land-based BWT technology evaluation. FastBallast counts were more similar to the density of protist entities ≥10 µm in any dimension than they were to live density of individual protist cells comprising entities ≥10 µm in minimum dimension. The device was found to have minor operational issues but was found reliable for measuring organisms within the protist size class.LSRI-GWRC would like to thank Chelsea Technologies Ltd. (Surrey, UK) for their application to our laboratory-based testing program and for providing the FastBallast device and the expendable supplies for analysis. Mary Burkitt-Gray and Kevin Oxborough at Chelsea Technologies Ltd. provided operational training support prior to the start of testing and were also instrumental in helping to troubleshoot technical/operational issues that occurred during testing. This work was supported by a grant from the United States Department of Transportation Maritime Administration’s Maritime Environmental and Technical Assistance Program

    Ballast Eye

    No full text
    This technical report presents findings from freshwater verification tests evaluating the performance of the Satake Ballast Eye Viable Organism Analyzer VOA1000K compliance monitoring device, hereafter Ballast Eye. Ballast Eye was developed by Satake Corporation of Hiroshima, Japan. The compliance monitoring device evaluation began in August 2020 and ended in December 2020 at the Lake Superior Research Institute (LSRI) of the University of Wisconsin-Superior (UWS) in Superior, Wisconsin, USA. Ballast Eye estimates the number of viable organisms and associated risk based on IMO D-2 ballast water discharge standards in the ≥10 and <50 µm (nominally protists) and ≥50 µm (nominally zooplankton) regulated size classes by measuring the fluorescence pulse number from fluorescein diacetate (FDA) stained organisms within a water sample. The verification testing was composed of three phases. Phase I testing was completed in two water types with laboratory-cultured organisms in the two regulated size classes, utilizing the single-celled protist Haematococcus pluvialis and colonial protist Scenedesmus quadricauda, and the zooplankton Daphnia magna and Eucyclops spp. Phase II was completed using naturally occurring Great Lakes organisms in the Duluth-Superior Harbor of western Lake Superior in the two regulated size classes. Phase III testing was completed using Duluth-Superior harbor water and ambient organisms before and after treatment with a ballast water treatment technology (BWT) during three land-based trials. Data from all phases were analyzed for precision, accuracy, and reliability. Quantification/detection limits were calculated for Phase I data. Phase I testing showed Ballast Eye was able to accurately estimate the number of zooplankton in high and low transparency water, while protist concentrations were not accurately determined. Phase II testing showed Ballast Eye was unable to accurately estimate the number or risk of ambient zooplankton or protists in Duluth-Superior harbor water. Phase III testing showed that Ballast Eye was able to accurately classify risk of ambient zooplankton or protists within uptake and treated discharge samples collected during land-based ballast water treatment technology testing at the Montreal Pier Facility located on the Duluth-Superior harbor.LSRI-GWRC would like to thank Satake Corporation (Hiroshima, Japan) and MOL Techno-Trade Ltd. (Tokyo, Japan) for their application to our laboratory-based testing program and for providing Ballast Eye and the expendable supplies for analysis. Hiroki Ishizuki, Yoshinori Tazoe, and Shinya Fushida provided operational training support prior to the start of testing and were instrumental in helping to troubleshoot technical/operational issues that occurred during testing. This work was supported by a grant from the United States Department of Transportation Maritime Administration’s Maritime Environmental and Technical Assistance Program

    BallastWISE

    No full text
    This technical report presents findings from freshwater verification tests evaluating the performance of the MicroWISE BallastWISE compliance monitoring device, hereafter BallastWISE. BallastWISE was developed by MicroWISE, located in Ebeltoft, Denmark. The compliance monitoring device evaluation began in August 2020 and ended in December 2020, at the Lake Superior Research Institute (LSRI) of the University of Wisconsin-Superior (UWS) in Superior, Wisconsin, USA. BallastWISE utilizes separate chambers to enumerate organisms in each of two regulated size classes, ≥10 and <50 µm (nominally protists) and ≥50 µm (nominally zooplankton). Cameras and optical chambers capture video and track motility through software analysis for the zooplankton size class. Fluorescence microscopy evaluates chlorophyll containing organisms in addition to motility tracking in the protist size class. The verification testing was composed of three phases. Phase I testing was completed in two water types with laboratory-cultured organisms in the two regulated size classes, utilizing the single-celled protist Haematococcus pluvialis and colonial protist Scenedesmus quadricauda, and the zooplankton Eucyclops spp. and Daphnia magna. Phase II testing was completed using naturally occurring Great Lakes organisms in the Duluth-Superior Harbor of Lake Superior in the two regulated size classes. Phase III testing was completed using Duluth-Superior Harbor water and ambient organisms before and after treatment with a ballast water treatment technology (BWT) during three land-based trials. Data from all phases were analyzed for precision, accuracy, and reliability. Quantification/detection limits were also calculated from Phase I data . Phase I testing showed BallastWISE was effective at quantifying single-celled protists to within about 20% of the microscopic counts, but undercounted colonial protists. Colonial protist entity counts were close to microscopic entity counts suggesting that individuals within the colonies were not resolved. High total suspended solids (TSS) and (DOC) may slightly reduce BallastWISE sensitivity to protists. BallastWISE overcounted zooplankton in both species tested in both high and low TSS/DOC by between 150% and 420%. Phase II testing from the Duluth-Superior Harbor showed BallastWISE counts of natural assemblages of protists strictly in the ≥10 and <50 μm size class to be slightly below microscopic counts by about 35% and with high precision. Zooplankton were overestimated by BallastWISE by roughly 40% and with considerably more variation compared to microscopic counts. Phase III testing showed low BallastWISE accuracy and precision in untreated protist and zooplankton samples. This may have been caused by organism densities higher than the device’s effective upper limit of detection in the zooplankton samples, but further investigation would be needed to determine the cause of low accuracy and precision in protist analysis. BallastWISE accurately measured treated protist samples as 0 cells/mL in agreement with strict microscopic counts, but overcounted treated zooplankton samples in 2 out of 3 tests, possibly due to the method of treatment. A number of operational issues made enumeration of zooplankton unreliable, but improvements (e.g., software updates, guidance on device operation) from the developer over the period of this assessment have already improved performance. BallastWISE shows promise as a useful device for detecting and measuring protists and zooplankton in the Great Lakes as additional improvements are made.LSRI-GWRC would like to thank MicroWISE (Ebeltoft, Denmark) for their application to our laboratory-based testing program and for providing the BallastWISE system and the expendable supplies for analysis. Pia Haecky, MicroWISE CEO, and Nicholas Blackburn, MicroWISE Software Development, provided operational training support prior to the start of testing and were also instrumental in helping to troubleshoot technical/operational issues that occurred during testing. This work was supported by the United States Maritime Administration (United States Department of Transportation; Washington, D.C)

    Great Waters Research Collaborative: Great Lakes Ship Ballast Monitoring Project

    No full text
    This Technical Report, developed by the Great Waters Research Collaborative (GWRC), presents methods and findings from the Great Lakes Ship Ballast Monitoring Project (Project), a two-year effort supported by the United States Environmental Protection Agency’s (USEPA’s) Great Lakes Restoration Initiative via the Maritime Administration. The Lake Carriers’ Association requested that the GWRC team conduct this project to help it meet a requirement to execute a study evaluating risk associated with laker ballast water discharge in USEPA Vessel General Permit (VGP) 2013 Part 6.15.5.b., in response to Minnesota's 401 certification of VGP2013. The overarching goal of the Project was to characterize aquatic organism densities and community composition in Great Lakes ships’ ballast water (uptake and discharge) and analyze target species presence/absence in selected source water and receiving ports.Project funded by the United States Maritime Administration and United States Environmental Protection Agency through the Great Lakes Restoration Initiative
    corecore