223 research outputs found
Neutralization of LINGO-1 during In Vitro Differentiation of Neural Stem Cells Results in Proliferation of Immature Neurons
Identifying external factors that can be used to control neural stem cells division and their differentiation to neurons, astrocytes and oligodendrocytes is of high scientific and clinical interest. Here we show that the Nogo-66 receptor interacting protein LINGO-1 is a potent regulator of neural stem cell maturation to neurons. LINGO-1 is expressed by cortical neural stem cells from E14 mouse embryos and inhibition of LINGO-1 during the first days of neural stem cell differentiation results in decreased neuronal maturation. Compared to neurons in control cultures, which after 6 days of differentiation have long extending neurites, neurons in cultures treated with anti-LINGO-1 antibodies retain an immature, round phenotype with only very short processes. Furthermore, neutralization of LINGO-1 results in a threefold increase in βIII tubulin-positive cells compared to untreated control cultures. By using BrdU incorporation assays we show that the immature neurons in LINGO-1 neutralized cultures are dividing neuroblasts. In contrast to control cultures, in which no cells were double positive for βIII tubulin and BrdU, 36% of the neurons in cultures treated with anti-LINGO-1 antibodies were proliferating after three days of differentiation. TUNEL assays revealed that the amount of cells going through apoptosis during the early phase of differentiation was significantly decreased in cultures treated with anti-LINGO-1 antibodies compared to untreated control cultures. Taken together, our results demonstrate a novel role for LINGO-1 in neural stem cell differentiation to neurons and suggest a possibility to use LINGO-1 inhibitors to compensate for neuronal cell loss in the injured brain
Determinants of immigration strategies in male crested macaques (Macaca nigra).
Immigration into a new group can produce substantial costs due to resistance from residents, but also reproductive benefits. Whether or not individuals base their immigration strategy on prospective costbenefit ratios remains unknown. We investigated individual immigration decisions in crested macaques, a primate species with a high reproductive skew in favour of high-ranking males. We found two different strategies. Males who achieved low rank in the new group usually immigrated after another male had immigrated within the previous 25 days and achieved high rank. They never got injured but also had low prospective reproductive success. We assume that these males benefitted from immigrating into a destabilized male hierarchy. Males who achieved high rank in the new group usually immigrated independent of previous immigrations. They recieved injuries more frequently and therefore bore immigration costs. They, however, also had higher reproductive success prospects. We conclude that male crested macaques base their immigration strategy on relative fighting ability and thus potential rank in the new group i.e. potential reproductive benefits, as well as potential costs of injury
Congenital Hydrocephalus and Abnormal Subcommissural Organ Development in Sox3 Transgenic Mice
Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner
Mapping and Functional Characterisation of a CTCF-Dependent Insulator Element at the 3′ Border of the Murine Scl Transcriptional Domain
The Scl gene encodes a transcription factor essential for haematopoietic development. Scl transcription is regulated by a panel of cis-elements spread over 55 kb with the most distal 3′ element being located downstream of the neighbouring gene Map17, which is co-regulated with Scl in haematopoietic cells. The Scl/Map17 domain is flanked upstream by the ubiquitously expressed Sil gene and downstream by a cluster of Cyp genes active in liver, but the mechanisms responsible for delineating the domain boundaries remain unclear. Here we report identification of a DNaseI hypersensitive site at the 3′ end of the Scl/Map17 domain and 45 kb downstream of the Scl transcription start site. This element is located at the boundary of active and inactive chromatin, does not function as a classical tissue-specific enhancer, binds CTCF and is both necessary and sufficient for insulator function in haematopoietic cells in vitro. Moreover, in a transgenic reporter assay, tissue-specific expression of the Scl promoter in brain was increased by incorporation of 350 bp flanking fragments from the +45 element. Our data suggests that the +45 region functions as a boundary element that separates the Scl/Map17 and Cyp transcriptional domains, and raise the possibility that this element may be useful for improving tissue-specific expression of transgenic constructs
A Severe Lack of Evidence Limits Effective Conservation of the World's Primates
Threats to biodiversity are well documented. However, to effectively conserve species and their habitats, we need to know which conservation interventions do (or do not) work. Evidence-based conservation evaluates interventions within a scientific framework. The Conservation Evidence project has summarized thousands of studies testing conservation interventions and compiled these as synopses for various habitats and taxa. In the present article, we analyzed the interventions assessed in the primate synopsis and compared these with other taxa. We found that despite intensive efforts to study primates and the extensive threats they face, less than 1% of primate studies evaluated conservation effectiveness. The studies often lacked quantitative data, failed to undertake postimplementation monitoring of populations or individuals, or implemented several interventions at once. Furthermore, the studies were biased toward specific taxa, geographic regions, and interventions. We describe barriers for testing primate conservation interventions and propose actions to improve the conservation evidence base to protect this endangered and globally important taxon
- …