249 research outputs found

    Electromagnetic Spectrum from QGP Fluid

    Get PDF
    We calculate thermal photon and electron pair distribution from hot QCD matter produced in high energy heavy-ion collisions, based on a hydrodynamical model which is so tuned as to reproduce the recent experimental data at CERN SPS, and compare these electromagnetic spectra with experimental data given by CERN WA80 and CERES. We investigate mainly the effects of the off-shell properties of the source particles on the electromagnetic spectra.Comment: 5 pages, latex, 4 Postscript figures. A talk given at the International School on the Physics of Quark Gluon Plasma, June 3-6, 1997, Hiroshima, Japan. To be appeared in Prog. Theor. Phys. Supplemen

    Thermal Photon Emission from QGP fluid

    Full text link
    We compare the numerical results of thermal photon distribution from the hot QCD matter produced by high energy nuclear collisions, based on hydrodynamical model, with the recent experimental data obtained by CERN WA80. Through the asymptotic value of the slope parameter of the transverse momentum distribution, we discuss the characteristic temperature of the QCD fluid.Comment: 16 pages, latex, 8 Postscript figure

    Analysis of one- and two-particle spectra at RHIC based on a hydrodynamical model

    Get PDF
    We calculate the one-particle hadronic spectra and correlation functions of pions based on a hydrodynamical model. Parameters in the model are so chosen that the one-particle spectra reproduce experimental results of s=130A\sqrt{s}=130AGeV Au+Au collisions at RHIC. Based on the numerical solution, we discuss the space-time evolution of the fluid. Two-pion correlation functions are also discussed. Our numerical solution suggests the formation of the quark-gluon plasma with large volume and low net baryon density.Comment: LaTeX, 4pages, 4 figures. To appear in the proceedings of Fourth International Conference on Physics and Astrophysics of Quark-Gluon Plasma (ICPAQGP-2001), Nov 26-30, 2001, Jaipur, Indi

    Application of PDT for Uterine Cervical Cancer

    Get PDF
    We have been performing PDT using Excimer Dye Laser (EDL) or YAG-OPO laser, a type of low power laser, both of which have a considerably higher degree of tissue penetration even when compared to PDT using Argon Dye Laser (ADL)

    Comparison of space-time evolutions of hot/dense matter in sNN\sqrt{s_{NN}}=17 and 130 GeV relativistic heavy ion collisions based on a hydrodynamical model

    Full text link
    Based on a hydrodynamical model, we compare 130 GeV/AA Au+Au collisions at RHIC and 17 GeV/AA Pb+Pb collisions at SPS. The model well reproduces the single-particle distributions of both RHIC and SPS. The numerical solution indicates that huge amount of collision energy in RHIC is mainly used to produce a large extent of hot fluid rather than to make a high temperature matter; longitudinal extent of the hot fluid in RHIC is much larger than that of SPS and initial energy density of the fluid is only 5% higher than the one in SPS. The solution well describes the HBT radii at SPS energy but shows some deviations from the ones at RHIC.Comment: 28 pages, 21 figures, REVTeX4, one figure is added and some figures are replace

    Transparent Synchronous Dataflow

    Full text link
    Dataflow programming is a popular and convenient programming paradigm in systems modelling, optimisation, and machine learning. It has a number of advantages, for instance the lacks of control flow allows computation to be carried out in parallel as well as in distributed machines. More recently the idea of dataflow graphs has also been brought into the design of various deep learning frameworks. They facilitate an easy and efficient implementation of automatic differentiation, which is the heart of modern deep learning paradigm. [abstract abridged

    Time evolution in visible light emission from high-power Ar pulse-modulated induction thermal plasmas

    Full text link

    Instantons and Scalar Multiquark States: From Small to Large N_c

    Full text link
    We study scalar quark-anti-quark and two-quark-two-anti-quark correlation functions in the instanton liquid model. We show that the instanton liquid supports a light scalar-isoscalar (sigma) meson, and that this state is strongly coupled to both (qˉq)(\bar{q}q) and (qˉq)2(\bar{q}q)^2. The scalar-isovector a0a_0 meson, on the other hand, is heavy. We also show that these properties are specific to QCD with three colors. In the large NcN_c limit the scalar-isoscalar meson is not light, and it is mainly coupled to (qˉq)(\bar{q}q).Comment: 24 page

    Hydrodynamical analysis of hadronic spectra in the 130 GeV/nucleon Au+Au collisions

    Get PDF
    We study one-particle spectra and a two-particle correlation function in the 130 GeV/nucleon Au+Au collisions at RHIC by making use of a hydrodynamical model. We calculate the one-particle hadronic spectra and present the first analysis of Bose-Einstein correlation functions based on the numerical solution of the hydrodynamical equations which takes both longitudinal and transverse expansion into account appropriately. The hydrodynamical model provides excellent agreement with the experimental data in the pseudorapidity and the transverse momentum spectra of charged hadrons, the rapidity dependence of anti-proton to proton ratio, and almost consistent result for the pion Bose-Einstein correlation functions. Our numerical solution with simple freeze-out picture suggests the formation of the quark-gluon plasma with large volume and low net-baryon density.Comment: 7 pages, 8 figures, REVTeX4. Numerical results and figures are correcte

    General Structure of Relativistic Vector Condensation

    Get PDF
    We study relativistic massive vector condensation due to a non zero chemical potential associated to some of the global conserved charges of the theory. We show that the phase structure is very rich. More specifically there are three distinct phases depending on the value of one of the zero chemical potential vector self interaction terms. We also develop a formalism which enables us to investigate the vacuum structure and dispersion relations in the spontaneously broken phase of the theory. We show that in a certain limit of the couplings and for large chemical potential the theory is not stable. This limit, interestingly, corresponds to a gauge type limit often employed to economically describe the ordinary vector mesons self interactions in QCD. We finally indicate for which physical systems our analysis is relevant.Comment: RevTex4 14 pages,4 figure
    • …
    corecore