8 research outputs found
A case study in Bangka Island, Indonesia on the utilization of pesticides in black pepper plantations
Habits and consequences of pesticide use in pepper plantations were studied in Indonesia. The first study was conducted by questioning 117 farmers about their habits in pesticide use and determining pesticide residues on pepper berries on Bangka Island. Meanwhile, the second study was completed by analyzing exposure levels of pesticide in farmers' bodies before and after pesticide application to pepper plantations at Sukamulya, West Java. Risks of pesticide exposure to below ground terrestrial invertebrates and aquatic ecosystems adjacent to the treated fields were evaluated using scenarios and a decision support system. Results showed that five respondents (4.3%) were agricultural workers without their own plantations and the others were plantation owners. About 112 respondents (95.7%) used pesticides regularly, while 21 respondents (17.9%) had experienced pesticide poisoning. About 54 respondents (46.2%) tended to apply the same pesticide on all occasions, and 104 respondents (88.9%) indicated to always apply a single compound. About 91 respondents (77.8%) were not aware of the possible impact of pesticides on their health, and 102 respondents (87.2%) were not aware of the possible effects on the environment. In addition while spraying pesticides 17 respondents (14.5%) were smoking, 81 respondents (69.2%) were wearing daily clothes, and 84 respondents (71.8%) were throwing empty bottles into the forest. Exposure study revealed that the residues in the urine and blood increased 6.5-10 and 1.1-1.5 folds, respectively indicating actual and direct exposures. The environmental risk assessment indicated low risks for the terrestrial below ground invertebrates but high potential risks for the aquatic ecosystem. The residues of the major pesticides were below the maximum residue limits. This study indicated that the farmers and their workers, and probably also the environment, were at risk of high exposure to the pesticides applied, but that the risks for the consumers were negligible, if present at all
Estrogenic and esterase inhibiting potency in rainwater in relation to pesticide concentrations, sampling season and location
In a year-round monitoring program (1998), pesticide composition and toxic potency of the mix of pollutants present in rainwater were measured. The goal of the study was to relate atmospheric deposition of toxic potency and pesticide composition to each other and to sampling period and local agricultural activity. Rainwater was collected in 26 consecutive periods of 14 days in a background location (BACK) and in two locations representative for different agricultural practices, i.e. intensive greenhouse horticulture (HORT) and flower bulb culture (BULB). Samples were chemically analyzed for carbamate (CARB), organophosphate (OP) and organochlorine (OC) pesticides and metabolites. Esterase inhibiting potency of rainwater extracts was measured in a specially developed bio-assay with honeybee esterases and was expressed as an equivalent concentration of the model inhibitor dichlorvos. Estrogenic potency of the extracts was measured in the ER-CALUX reporter gene assay and was expressed as an equivalent concentration of estradiol. Multivariate principal component analysis (PCA) techniques proved to be valuable tools to analyze the numerous pesticide concentrations in relation to toxic potency, sampling location, and sampling season. Pesticide composition in rainwater depended much more on sampling season than on sampling location, but differences between SPRING and SUMMER were mainly attributed to local differences in agricultural practice. On average, the esterase inhibiting potency exceeded the maximum permissible concentration set for dichlorvos in The Netherlands, and was significantly higher in HORT than in BACK and BULB. Esterase inhibition correlated significantly with OP and GARB concentrations, as expected given the working mechanism of these insecticides. The estrogenic potency incidentally exceeded NOEC levels reported for aquatic organisms and was highest in SPRING. Although estrogenic potency of rainwater correlated with OC concentrations, the ER-CALUX responses could not be attributed to any particular pesticides. Besides, the contribution of non-analyzed xeno-estrogens as alkylphenol(-ethoxylates) and bisphenol-A to the estrogenic potency of rainwater could not be excluded. Further research should focus on the chemical identification of estrogenic compounds in rainwater. In addition, more attention should be given to the ecological consequences of atmospheric deposition of individual pesticides and of total toxic potencies that regularly exceed environmental criteria for Dutch surface waters and/or toxic threshold values for aquatic organisms. (C) 2003 Elsevier Science Ltd. All rights reserved
Environmental impact and recovery at two dumping sites for dredged material in the North Sea
The environmental impact and recovery associated with the long and uninterrupted disposal of large volumes of moderately contaminated dredged material from the port of Rotterdam was studied at nearby dumping sites in the North Sea. Observations were made on sediment contamination, ecotoxicity, biomarker responses and benthic community changes shortly after dumping at the 'North' site had ceased and at the start of disposal at the new dumping site 'Northwest'. During the period of dumping, very few benthic invertebrates were found at the North site. Concentrations of cadmium, mercury, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and tributyltin (TBT) in the fine sediment fraction (<63 mum) from this site were 2-3 times higher than at the reference site. In four different bioassays with marine invertebrates the sediments showed no acute toxic effects. In tissue (pyloric caeca) of resident starfish Asterias rubens, residual levels of mercury, zinc, PCBs and dioxin-like activity were never more than twice those at the reference site. Four different biomarkers (DNA integrity, cytochrome P450 content, benzo[a]pyrene hydroxylase activity and acetylcholinesterase inhibition) were used on the starfish tissues, but no significant differences were found between North and the reference site. Minor pathological effects were observed in resident dab Limanda limanda. One year after dumping had ceased at the North site, a significant increase in the species richness and abundance of benthic invertebrates and a concomitant decrease in the fine sediment fraction of the seabed were observed. After 8.2 million m(3) of moderately contaminated dredged material had been dumped at the new dumping site Northwest, the species richness and abundance of benthic invertebrates declined over an area extending about 1-2 km eastwards. This correlated with a shift in sediment texture from sand to silt. The contamination of the fine sediment fraction at the Northwest location doubled. It is concluded that marine benthic resources at and around the dumping sites have been adversely affected by physical disturbance (burial, smothering). However, no causal link could be established with sediment-associated contaminants from the dredged spoils. (C) 2003 Elsevier Science Ltd. All rights reserved
A retrospective analysis to explore the applicability of fish biomarkers and sediment bioassays along contaminated salinity transects
Biological-effects monitoring in estuarine environments is complex as a result of strong gradients and fluctuations in salinity and other environmental conditions, which may influence contaminant bioavailability and the physiology and metabolism of the organisms. To select the most robust and reliable biological-effect methods for monitoring and assessment programmes, a large-scale field study was conducted in two estuarine transects in the Netherlands. The locations ranged from heavily polluted harbour areas (the ports of Rotterdam and Amsterdam) to cleaner coastal and freshwater sites. Assessment methods used included a variety of biomarkers in flounder (Platichthys flesus) and a range of in vitro (sediment extracts) and in vivo bioassays. Multivariate statistical analysis was applied to investigate correlations and relationships between various biological effects and contaminant levels in flounder liver or sediments. Several biological methods seemed to be too much affected by salinity differences for routine use in estuaries. The most discriminative biomarkers in the study were hepatic metallothionein content and biliary 1-OH pyrene in fish. Mechanism-based in vitro assays DR-CALUX and ER-CALUX applied to sediment extracts for screening of potential toxicity were much more responsive than in vivo bioassays with macro-invertebrates using survival as an endpoint. © 2009 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved
A retrospective analysis to explore the applicability of fish biomarkers and sediment bioassays along contaminated salinity transects
Biological-effects monitoring in estuarine environments is complex as a result of strong gradients and fluctuations in salinity and other environmental conditions, which may influence contaminant bioavailability and the physiology and metabolism of the organisms. To select the most robust and reliable biological-effect methods for monitoring and assessment programmes, a large-scale field study was conducted in two estuarine transects in the Netherlands. The locations ranged from heavily polluted harbour areas (the ports of Rotterdam and Amsterdam) to cleaner coastal and freshwater sites. Assessment methods used included a variety of biomarkers in flounder (Platichthys flesus) and a range of in vitro (sediment extracts) and in vivo bioassays. Multivariate statistical analysis was applied to investigate correlations and relationships between various biological effects and contaminant levels in flounder liver or sediments. Several biological methods seemed to be too much affected by salinity differences for routine use in estuaries. The most discriminative biomarkers in the study were hepatic metallothionein content and biliary 1-OH pyrene in fish. Mechanism-based in vitro assays DR-CALUX and ER-CALUX applied to sediment extracts for screening of potential toxicity were much more responsive than in vivo bioassays with macro-invertebrates using survival as an endpoin