190 research outputs found

    Interactions microorganismes-nuage : activité glaçogène et survie

    Get PDF
    Airborne microorganisms have long been considered as inert, passive particles dealing with hostile conditions. Recent studies highlighting metabolic activity in cloud water raised questions about the role these organisms may play on physical and chemical processes in clouds. Indeed, cloud droplets and ice crystals formation at temperature warmer than -36°C need the presence of particles called “cloud condensation nuclei” or “ice nuclei”. Bacteria could be one of them. In addition, several works revealed a potential importance of microorganisms in organic matter transformation in clouds. The objective of this thesis was to study the reciprocal interactions between microorganisms and physico-chemical conditions in clouds. First, cloud physico-chemical and microbiological compositions were described by cloud sampling at the puy de Dôme station (1465 m, France) and statistical analyses were performed to highlight correlations between physico-chemical and/or biological parameters. Secondly, five microbial strains belonging to genera frequently isolated from cloud water were subjected to four atmospheric stresses: sunlight, hydrogen peroxide, osmotic shocks occurring when water droplets condensate or evaporate and freeze-thaw cycles. Thus, it was pointed that sunlight and hydrogen peroxide at cloud concentration have no or little impact on cell viability. On the opposite, osmotic shocks and freeze-thaw can be highly deleterious depending on the considered strain. The third part of this thesis focused on the detection of ice nucleating bacterial strains in cloud water. Seven strains were thus identified and described, and one of them was selected as a model to study its behavior (survival and ice nucleation activity, INA) in a cloud simulation chamber (AIDA, Germany). In parallel, biological ice nucleation activity was measured directly on cloud samples and bacterial INA was estimated. All these experiments highlighted underestimations of ice nucleation active bacteria in models simulating microphysical processes in clouds. This new dataset may be used as new parameterization in this kind of models. Finally, in order to estimate the bacterial contribution in cloud chemistry, numerical means are needed. Therefore, the last study of this thesis focused on the determination of biological kinetic constants that may be implemented in atmospheric chemistry models. The biodegradation of three major organic compounds encountered in cloud water by three bacterial strains isolated from clouds was measured. A first approach confirmed precedent team results highlighting a considerable contribution of microorganisms on the transformation of these compounds.Pendant longtemps, les microorganismes présents dans l’atmosphère n’ont été considérés qu’en tant que particules inertes subissant les conditions hostiles de cet environnement. Cependant, de récentes études mettant en évidence la présence de microorganismes métaboliquement actifs dans la phase aqueuse des nuages incitent à s’interroger sur le rôle que ces organismes pourraient avoir sur les processus physiques et chimiques des nuages. En effet, la formation de gouttelettes de nuage ou de cristaux de glace à des températures supérieures à -36°C nécessite la présence de particules dites « noyaux de condensation » ou « noyaux glaçogènes », dont les bactéries pourraient être des représentantes. De plus, plusieurs travaux ont révélé une importance potentielle des microorganismes dans la transformation de la matière organique dans les nuages. L’objectif de ces travaux de thèse a donc été d’étudier les interactions réciproques entre les microorganismes et les conditions physico-chimiques des nuages. Dans un premier temps, les composantes physico-chimiques et microbiologiques ont été caractérisées au moyen de prélèvements nuageux au sommet du puy de Dôme (1465 m, France) et des études statistiques ont permis de mettre en avant des corrélations entre les différents paramètres physico-chimiques et/ou biologiques. Puis, cinq souches microbiennes appartenant à des genres microbiens cultivables majeurs dans les nuages ont été soumises à quatre stress rencontrés dans les nuages : la lumière solaire, la présence de peroxyde d’hydrogène, les variations de chocs osmotiques intervenant lors de la formation et de la dissipation des gouttelettes d’eau et les cycles de gel et de dégel. Il a ainsi été mis en évidence que la lumière solaire et le peroxyde d’hydrogène dans des conditions nuageuses n’ont que peu ou pas d’impact sur la viabilité des cellules. A l’inverse, les chocs osmotiques et le gel-dégel peuvent être hautement délétères selon les souches considérées. La troisième partie de ce travail s’est focalisé à mettre en évidence la présence de souches bactériennes glaçogènes dans l’eau de nuage. Sept souches ont ainsi ont été identifiées et décrites, et l’une d’entre elles a été choisie comme modèle pour étudier le comportement de bactéries (survie et activité glaçogène) dans une chambre de simulaion de nuage (AIDA, Allemagne). En parallèle, l’activité glaçogène biologique de l’eau de nuage a été mesurée à partir de prélèvements au puy de Dôme et l’activité glaçogène bactérienne a été estimée. L’ensemble de ces travaux met en avant une sous-estimation jusqu’alors des proportions de bactéries glaçogènes dans les modèles numériques simulant les processus microphysiques d’initiation de la glace et des précipitations dans les nuages. Ces données vont désormais pouvoir être considérées dans de tels modèles. Enfin, afin d’estimer l’étendue de l’importance des microorganismes dans la chimie atmosphérique, il est nécessaire d’avoir recours à des modèles numériques. La dernière étude de cette thèse s’est consacrée à déterminer des constantes cinétiques de biodégradation de trois composés organiques majeurs des nuages par trois souches bactériennes isolées de cet environnement qui pourront servir à paramétrer des modèles numériques. Une première approche simple a permis de confirmer les résultats précédents de l’équipe en mettant en avant une contribution non négligeable des microorganismes dans leur dégradation

    Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: a cardiovascular magnetic resonance study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arterial stiffness is considered as an independent predictor of cardiovascular mortality, and is increasingly used in clinical practice. This study aimed at evaluating the consistency of the automated estimation of regional and local aortic stiffness indices from cardiovascular magnetic resonance (CMR) data.</p> <p>Results</p> <p>Forty-six healthy subjects underwent carotid-femoral pulse wave velocity measurements (<it>CF_PWV</it>) by applanation tonometry and CMR with steady-state free-precession and phase contrast acquisitions at the level of the aortic arch. These data were used for the automated evaluation of the aortic arch pulse wave velocity (<it>Arch_PWV</it>), and the ascending aorta distensibility (<it>AA_Distc, AA_Distb)</it>, which were estimated from ascending aorta strain (<it>AA_Strain</it>) combined with either carotid or brachial pulse pressure. The local ascending aorta pulse wave velocity <it>AA_PWVc </it>and <it>AA_PWVb </it>were estimated respectively from these carotid and brachial derived distensibility indices according to the Bramwell-Hill theoretical model, and were compared with the <it>Arch_PWV</it>. In addition, a reproducibility analysis of <it>AA_PWV </it>measurement and its comparison with the standard <it>CF_PWV </it>was performed. Characterization according to the Bramwell-Hill equation resulted in good correlations between <it>Arch_PWV </it>and both local distensibility indices <it>AA_Distc </it>(r = 0.71, p < 0.001) and <it>AA_Distb </it>(r = 0.60, p < 0.001); and between <it>Arch_PWV </it>and both theoretical local indices <it>AA_PWVc </it>(r = 0.78, p < 0.001) and <it>AA_PWVb </it>(r = 0.78, p < 0.001). Furthermore, the <it>Arch_PWV </it>was well related to <it>CF_PWV </it>(r = 0.69, p < 0.001) and its estimation was highly reproducible (inter-operator variability: 7.1%).</p> <p>Conclusions</p> <p>The present work confirmed the consistency and robustness of the regional index <it>Arch_PWV </it>and the local indices <it>AA_Distc and AA_Distb </it>according to the theoretical model, as well as to the well established measurement of <it>CF_PWV</it>, demonstrating the relevance of the regional and local CMR indices.</p

    Methods to Investigate the Global Atmospheric Microbiome

    Get PDF
    The interplay between microbes and atmospheric physical and chemical conditions is an open field of research that can only be fully addressed using multidisciplinary approaches. The lack of coordinated efforts to gather data at representative temporal and spatial scales limits aerobiology to help understand large scale patterns of global microbial biodiversity and its causal relationships with the environmental context. This paper presents the sampling strategy and analytical protocols developed in order to integrate different fields of research such as microbiology, –omics biology, atmospheric chemistry, physics and meteorology to characterize atmospheric microbial life. These include control of chemical and microbial contaminations from sampling to analysis and identification of experimental procedures for characterizing airborne microbial biodiversity and its functioning from the atmospheric samples collected at remote sites from low cell density environments. We used high-volume sampling strategy to address both chemical and microbial composition of the atmosphere, because it can help overcome low aerosol and microbial cell concentrations. To account for contaminations, exposed and unexposed control filters were processed along with the samples. We present a method that allows for the extraction of chemical and biological data from the same quartz filters. We tested different sampling times, extraction kits and methods to optimize DNA yield from filters. Based on our results, we recommend supplementary sterilization steps to reduce filter contamination induced by handling and transport. These include manipulation under laminar flow hoods and UV sterilization. In terms of DNA extraction, we recommend a vortex step and a heating step to reduce binding to the quartz fibers of the filters. These steps have led to a 10-fold increase in DNA yield, allowing for downstream omics analysis of air samples. Based on our results, our method can be integrated into pre-existing long-term monitoring field protocols for the atmosphere both in terms of atmospheric chemistry and biology. We recommend using standardized air volumes and to develop standard operating protocols for field users to better control the operational quality

    Benzofuran-fused Phosphole: Synthesis, Electronic, and Electroluminescence Properties

    Get PDF
    International audienceA synthetic route to novel benzofuran-fused phosphole derivatives 3-5 is described. These compounds showed optical and electrochemical properties that differ from their benzothiophene analog. Preliminary results show that 4 can be used as an emitter in OLEDs, illustrating the potential of these new compounds for opto-electronic applications

    Carbohydrate Metabolism Is Essential for the Colonization of Streptococcus thermophilus in the Digestive Tract of Gnotobiotic Rats

    Get PDF
    Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT) of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8) and p27Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance

    Bacteria isolated from lung modulate asthma susceptibility in mice

    Full text link
    Asthma is a chronic, non-curable, multifactorial disease with increasing incidence in industrial countries. This study evaluates the direct contribution of lung microbial components in allergic asthma in mice. Germ-Free and Specific-Pathogen-Free mice display similar susceptibilities to House Dust Mice-induced allergic asthma, indicating that the absence of bacteria confers no protection or increased risk to aeroallergens. In early life, allergic asthma changes the pattern of lung microbiota, and lung bacteria reciprocally modulate aeroallergen responsiveness. Primo-colonizing cultivable strains were screened for their immunoregulatory properties following their isolation from neonatal lungs. Intranasal inoculation of lung bacteria influenced the outcome of allergic asthma development: the strain CNCM I 4970 exacerbated some asthma features whereas the pro-Th1 strain CNCM I 4969 had protective effects. Thus, we confirm that appropriate bacterial lung stimuli during early life are critical for susceptibility to allergic asthma in young adults

    Ploidy of Cell-Sorted Trophic and Cystic Forms of Pneumocystis carinii

    Get PDF
    Once regarded as an AIDS-defining illness, Pneumocystis pneumonia (PcP) is nowadays prevailing in immunocompromised HIV-negative individuals such as patients receiving immunosuppressive therapies or affected by primary immunodeficiency. Moreover, Pneumocystis clinical spectrum is broadening to non-severely-immunocompromised subjects who could be colonized by the fungus while remaining asymptomatic for PcP, thus being able to transmit the infection by airborne route to susceptible hosts. Although the taxonomical position of the Pneumocystis genus has been clarified, several aspects of its life cycle remain elusive such as its mode of proliferation within the alveolus or its ploidy level. As no long-term culture model exists to grow Pneumocystis organisms in vitro, an option was to use a model of immunosuppressed rat infected with Pneumocystis carinii and sort life cycle stage fractions using a high-through-put cytometer. Subsequently, ploidy levels of the P. carinii trophic and cystic form fractions were measured by flow cytometry. In the cystic form, eight contents of DNA were measured thus strengthening the fact that each mature cyst contains eight haploid spores. Following release, each spore evolves into a trophic form. The majority of the trophic form fraction was haploid in our study. Some less abundant trophic forms displayed two contents of DNA indicating that they could undergo (i) mating/fusion leading to a diploid status or (ii) asexual mitotic division or (iii) both. Even less abundant trophic forms with four contents of DNA were suggestive of mitotic divisions occurring following mating in diploid trophic forms. Of interest, was the presence of trophic forms with three contents of DNA, an unusual finding that could be related to asymmetrical mitotic divisions occurring in other fungal species to create genetic diversity at lower energetic expenses than mating. Overall, ploidy data of P. carinii life cycle stages shed new light on the complexity of its modes of proliferation

    Lactobacillaceae and Cell Adhesion: Genomic and Functional Screening

    Get PDF
    The analysis of collections of lactic acid bacteria (LAB) from traditional fermented plant foods in tropical countries may enable the detection of LAB with interesting properties. Binding capacity is often the main criterion used to investigate the probiotic characteristics of bacteria. In this study, we focused on a collection of 163 Lactobacillaceace comprising 156 bacteria isolated from traditional amylaceous fermented foods and seven strains taken from a collection and used as controls. The collection had a series of analyses to assess binding potential for the selection of new probiotic candidates. The presence/absence of 14 genes involved in binding to the gastrointestinal tract was assessed. This enabled the detection of all the housekeeping genes (ef-Tu, eno, gap, groEl and srtA) in the entire collection, of some of the other genes (apf, cnb, fpbA, mapA, mub) in 86% to 100% of LAB, and of the other genes (cbsA, gtf, msa, slpA) in 0% to 8% of LAB. Most of the bacteria isolated from traditional fermented foods exhibited a genetic profile favorable for their binding to the gastrointestinal tract. We selected 30 strains with different genetic profiles to test their binding ability to non-mucus (HT29) and mucus secreting (HT29-MTX) cell lines as well as their ability to degrade mucus. Assays on both lines revealed high variability in binding properties among the LAB, depending on the cell model used. Finally, we investigated if their binding ability was linked to tighter cross-talk between bacteria and eukaryotic cells by measuring the expression of bacterial genes and of the eukaryotic MUC2 gene. Results showed that wild LAB from tropical amylaceous fermented food had a much higher binding capacity than the two LAB currently known to be probiotics. However their adhesion was not linked to any particular genetic equipment

    EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe

    Get PDF
    AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events
    corecore