23 research outputs found

    An ex vivo model for anti-angiogenic drug testing on intact microvascular networks.

    Full text link
    New models of angiogenesis that mimic the complexity of real microvascular networks are needed. Recently, our laboratory demonstrated that cultured rat mesentery tissues contain viable microvascular networks and could be used to probe pericyte-endothelial cell interactions. The objective of this study was to demonstrate the efficacy of the rat mesentery culture model for anti-angiogenic drug testing by time-lapse quantification of network growth. Mesenteric windows were harvested from adult rats, secured in place with an insert, and cultured for 3 days according to 3 experimental groups: 1) 10% serum (angiogenesis control), 2) 10% serum + sunitinib (SU11248), and 3) 10% serum + bevacizumab. Labeling with FITC conjugated BSI-lectin on Day 0 and 3 identified endothelial cells along blood and lymphatic microvascular networks. Comparison between day 0 (before) and 3 (after) in networks stimulated by 10% serum demonstrated a dramatic increase in vascular density and capillary sprouting. Growing networks contained proliferating endothelial cells and NG2+ vascular pericytes. Media supplementation with sunitinib (SU11248) or bevacizumab both inhibited the network angiogenic responses. The comparison of the same networks before and after treatment enabled the identification of tissue specific responses. Our results establish, for the first time, the ability to evaluate an anti-angiogenic drug based on time-lapse imaging on an intact microvascular network in an ex vivo scenario

    Induction of Microvascular Network Growth in the Mouse Mesentery

    Full text link
    Objective: Motivated by observations of mesenteries harvested from mice treated with tamoxifen dissolved in oil for inducible gene mutation studies, the objective of this study was to demonstrate that microvascular growth can be induced in the avascular mouse mesentery tissue. Methods: C57BL/6 mice were administered an IP injection for five consecutive days of: saline, sunflower oil, tamoxifen dissolved in sunflower oil, corn oil, or peanut oil. Results: Twenty-one days post-injection, zero tissues from saline group contained branching microvascular networks. In contrast, all tissues from the three oils and tamoxifen groups contained vascular networks with arterioles, venules, and capillaries. Smooth muscle cells and pericytes were present in their expected locations and wrapping morphologies. Significant increases in vascularized tissue area and vascular density were observed when compared to saline group, but sunflower oil and tamoxifen group were not significantly different. Vascularized tissues also contained LYVE-1-positive and Prox1-positive lymphatic networks, indicating that lymphangiogenesis was stimulated. When comparing the different oils, vascularized tissue area and vascular density of sunflower oil were significantly higher than corn and peanut oils. Conclusions: These results provide novel evidence supporting that induction of microvascular network growth into the normally avascular mouse mesentery is possible

    Estimation of the Pressure Drop Required for Lymph Flow through Initial Lymphatic Networks

    Full text link
    Background: Lymphatic function is critical for maintaining interstitial fluid balance and is linked to multiple pathological conditions. While smooth muscle contractile mechanisms responsible for fluid flow through collecting lymphatic vessels are well studied, how fluid flows into and through initial lymphatic networks remains poorly understood. The objective of this study was to estimate the pressure difference needed for flow through an intact initial lymphatic network. Methods and Results: Pressure drops were computed for real and theoretical networks with varying branch orders using a segmental Poiseuille flow model. Vessel geometries per branch order were based on measurements from adult Wistar rat mesenteric initial lymphatic networks. For computational predications based on real network geometries and combinations of low or high output velocities (2 mm/s, 4 mm/s) and viscosities (1 cp, 1.5 cp), pressure drops were estimated to range 0.31–2.57 mmHg. The anatomical data for the real networks were also used to create a set of theoretical networks in order to identify possible minimum and maximum pressure drops. The pressure difference range for the theoretical networks was 0.16–3.16 mmHg. Conclusions: The results support the possibility for suction pressures generated from cyclic smooth muscle contractions of upstream collecting lymphatics being sufficient for fluid flow through an initial lymphatic network
    corecore