98 research outputs found

    A Retrospective Analysis of Transfusion Management for Obstetric Hemorrhage in a Japanese Obstetric Center

    Get PDF
    Background. Since cryoprecipitate, fibrinogen concentrate, or recombinant activated factor VII is not approved by public medical insurance in Japan, we retrospectively assessed blood product usage in patients with obstetric hemorrhage at our tertiary obstetric center. Material and Methods. 220 patients with obstetric hemorrhagic disorders who underwent blood product transfusion in our institution during a 5-year period were reviewed for the types and volumes of blood products transfused. Results. There was a significant positive correlation (P< 0.001) between the volume of RCC (red blood cell concentrate) transfused and that of FFP (fresh frozen plasma), irrespective of underlying obstetric disorders. The median of FFP to RCC ratio in each patient was 1.3–1.4, when 6 or more units of RCC were transfused. Conclusions. In transfusion for massive obstetric hemorrhage in terms of appropriate supplementation of coagulation factors, the transfusion of RCC : FFP = 1 : 1.3–1.4 may be desirable

    Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: Comparison with apoprotein CIII

    Get PDF
    Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: Comparison with apoprotein CIII.BackgroundRecent studies have suggested that apoprotein (apo) CI in very low-density lipoprotein (VLDL) plays an important role in causing hypertriglyceridemia independent of apo CIII, which is associated with coronary heart disease (CHD). Because the incidence of CHD is increased in diabetic patients and is even higher when diabetic nephropathy is developed, we measured apo CI levels in VLDL from type 2 diabetic patients, with various degree of nephropathy, and compared the results with those for healthy controls or nondiabetic patients with chronic renal failure (CRF).MethodsThis study enrolled healthy control subjects, type 2 diabetic patients with normoalbuminuria, microalbuminuria, overt proteinuria, and CRF on hemodialysis and nondiabetic hemodialyis patients. VLDL (density <1.006) was separated by ultracentrifugation. Then the apo CI, CIII, and B concentrations in VLDL were measured by enzyme-linked immunosorbent assay (ELISA).ResultsThe apo CI, CIII, and B concentrations in VLDL were respectively 3-, 2-, and 2-fold higher, respectively, in diabetic patients with overt proteinuria than in controls. Hemodialysis patients with diabetic nephropathy had levels of apo CI, CIII, and B in VLDL that were 2.6-, 2.7- and 2-fold higher, respectively, than those in controls. Nondiabetic hemodialysis patients also had a 2.7-fold higher level of VLDL apo CIII, whereas VLDL apo CI and VLDL apo B were not significantly increased. VLDL apo CI was significantly correlated with VLDL apo B independently of VLDL apo CIII level.ConclusionAn increase of VLDL apo CIII is a prominent feature of dyslipidemia in CRF patients, regardless of whether they are diabetic or nondiabetic, whereas an increase of VLDL apo CI is more specific to diabetic nephropathy and is closely associated with an increase of VLDL particle numbers, a new risk factor for CHD

    Induction of Pluripotent Stem Cells from a Manifesting Carrier of Duchenne Muscular Dystrophy and Characterization of Their X-Inactivation Status

    Get PDF
    Three to eight percent of female carriers of Duchenne muscular dystrophy (DMD) develop dystrophic symptoms ranging from mild muscle weakness to a rapidly progressive DMD-like muscular dystrophy due to skewed inactivation of X chromosomes during early development. Here, we generated human induced pluripotent stem cells (hiPSCs) from a manifesting female carrier using retroviral or Sendai viral (SeV) vectors and determined their X-inactivation status. Although manifesting carrier-derived iPS cells showed normal expression of human embryonic stem cell markers and formed well-differentiated teratomas in vivo, many hiPS clones showed bi-allelic expression of the androgen receptor (AR) gene and loss of X-inactivation-specific transcript and trimethyl-histone H3 (Lys27) signals on X chromosomes, suggesting that both X chromosomes of the hiPS cells are in an active state. Importantly, normal dystrophin was expressed in multinucleated myotubes differentiated from a manifesting carrier of DMD-hiPS cells with XaXa pattern. AR transcripts were also equally transcribed from both alleles in induced myotubes. Our results indicated that the inactivated X chromosome in the patient’s fibroblasts was activated during reprogramming, and XCI occurred randomly during differentiation

    Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration

    Get PDF
    金沢大学医薬保健研究域 医学系Goldfish retinal ganglion cells (RGCs) can regrow their axons after optic nerve injury. However, the reason why goldfish RGCs can regenerate after nerve injury is largely unknown at the molecular level. To investigate regenerative properties of goldfish RGCs, we divided the RGC regeneration process into two components: (1) RGC survival, and (2) axonal elongation processes. To characterize the RGC survival signaling pathway after optic nerve injury, we investigated cell survival/death signals such as Bcl-2 family members in the goldfish retina. Amounts of phospho-Akt (p-Akt) and phospho-Bad (p-Bad) in the goldfish retina rapidly increased four- to five-fold at the protein level by 3-5 days after nerve injury. Subsequently, Bcl-2 levels increased 1.7-fold, accompanied by a slight reduction in caspase-3 activity 10-20 days after injury. Furthermore, level of insulin-like growth factor-I (IGF-I), which activates the phosphatidyl inositol-3-kinase (PI3K)/Akt system, increased 2-3 days earlier than that of p-Akt in the goldfish retina. The cellular localization of these molecular changes was limited to RGCs. IGF-I treatment significantly induced phosphorylation of Akt, and strikingly induced neurite outgrowth in the goldfish retina in vitro. On the contrary, addition of the PI3K inhibitor wortmannin, and IGF-I antibody inhibited Akt phosphorylation and neurite outgrowth in an explant culture. Thus, we demonstrated, for the first time, the signal cascade for early upregulation of IGF-I, leading to RGC survival and axonal regeneration in adult goldfish retinas through PI3K/Akt system after optic nerve injury. The present data strongly indicate that IGF-I is one of the most important molecules for controlling regeneration of RGCs after optic nerve injury. © 2007 Elsevier Ltd. All rights reserved

    Accurate and simple method for quantification of hepatic fat content using magnetic resonance imaging: a prospective study in biopsy-proven nonalcoholic fatty liver disease

    Get PDF
    To assess the degree of hepatic fat content, simple and noninvasive methods with high objectivity and reproducibility are required. Magnetic resonance imaging (MRI) is one such candidate, although its accuracy remains unclear. We aimed to validate an MRI method for quantifying hepatic fat content by calibrating MRI reading with a phantom and comparing MRI measurements in human subjects with estimates of liver fat content in liver biopsy specimens. The MRI method was performed by a combination of MRI calibration using a phantom and double-echo chemical shift gradient-echo sequence (double-echo fast low-angle shot sequence) that has been widely used on a 1.5-T scanner. Liver fat content in patients with nonalcoholic fatty liver disease (NAFLD, n = 26) was derived from a calibration curve generated by scanning the phantom. Liver fat was also estimated by optical image analysis. The correlation between the MRI measurements and liver histology findings was examined prospectively. Magnetic resonance imaging measurements showed a strong correlation with liver fat content estimated from the results of light microscopic examination (correlation coefficient 0.91, P < 0.001) regardless of the degree of hepatic steatosis. Moreover, the severity of lobular inflammation or fibrosis did not influence the MRI measurements. This MRI method is simple and noninvasive, has excellent ability to quantify hepatic fat content even in NAFLD patients with mild steatosis or advanced fibrosis, and can be performed easily without special devices.ArticleJOURNAL OF GASTROENTEROLOGY. 45(12):1263-1271 (2010)journal articl

    Growth of self-integrated atomic quantum wires and junctions of a Mott semiconductor

    Get PDF
    1ナノメートル半導体量子細線の作製に成功 --量子の熱帯魚パターンが拓く未来のナノテク--. 京都大学プレスリリース. 2023-05-08.Continued advances in quantum technologies rely on producing nanometer-scale wires. Although several state-of-the-art nanolithographic technologies and bottom-up synthesis processes have been used to engineer these wires, critical challenges remain in growing uniform atomic-scale crystalline wires and constructing their network structures. Here, we discover a simple method to fabricate atomic-scale wires with various arrangements, including stripes, X-junctions, Y-junctions, and nanorings. Single-crystalline atomic-scale wires of a Mott insulator, whose bandgap is comparable to those of wide-gap semiconductors, are spontaneously grown on graphite substrates by pulsed-laser deposition. These wires are one unit cell thick and have an exact width of two and four unit cells (1.4 and 2.8 nm) and lengths up to a few micrometers. We show that the nonequilibrium reaction-diffusion processes may play an essential role in atomic pattern formation. Our findings offer a previously unknown perspective on the nonequilibrium self-organization phenomena on an atomic scale, paving a unique way for the quantum architecture of nano-network

    The E3 Ubiquitin Ligase Activity of Trip12 Is Essential for Mouse Embryogenesis

    Get PDF
    Protein ubiquitination is a post-translational protein modification that regulates many biological conditions [1], [2], [3], [4]. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1 [5], [6]. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12mt/mt) that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12mt/mt embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16 [7], [8], [9], [10]. In contrast, Trip12mt/mt ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12mt/mt ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex) and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development
    corecore