140 research outputs found

    Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum

    Get PDF
    AbstractWe investigated the effect of dopamine on the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum of mouse. BDNF mRNA expression in the striation, which was Quantified with the reverse transcriptase polymerase chain reaction, was up-repulated from 2 h after oral administration of levodopa, a precursor of dopamine. The increase was sustained for 16 h. Co-administrstion of haloperidol partially inhibited dopamine-induced BDNF enhancement. These data suggest that dopaminergic stimulation directly promotes the expression of BDNF in the striatum in vivo

    Nationwide patient registry for GNE myopathy in Japan

    Get PDF
    BACKGROUND: GNE myopathy is a slowly progressive autosomal recessive myopathy caused by mutations in the GNE (glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase) gene. This study aimed to (1) develop a nationwide patient registry for GNE myopathy in order to facilitate the planning of clinical trials and recruitment of candidates, and (2) gain further insight into the disease for the purpose of improving therapy and care. METHODS: Medical records of genetically-confirmed patients with GNE myopathy at the National Center Hospital of the National Center of Neurology and Psychiatry (NCNP) were retrospectively reviewed in order to obtain data reflecting the severity and progression of the disease. We also referred to items in the datasheet of the nationwide registry of dystrophinopathy patients in the Registry of Muscular Dystrophies (Remudy). Items selected for the registration sheet included age, sex, age at onset, past history and complications, family history, body weight and height, pathological findings of muscle biopsy, grip power, walking ability, respiratory function, cardiac function, willingness to join upcoming clinical trials, and participation in patient associations. A copy of the original genetic analysis report was required of each patient. RESULTS: We successfully established the Remudy-GNE myopathy. Currently, 121 patients are registered nationwide, and 93 physicians from 73 hospitals collaborated to establish the registry. The mean age at onset was 27.7 ± 9.6 years, and 19.8% (24/121) of patients could walk without assistance. Mean presumed durations from onset to use of assistive devices (cane and/or braces) and a wheelchair, and loss of ambulation were 12.4, 15.2, and 21.1 years, respectively. Three patients had a past history and/or complication of idiopathic thrombocytopenia. To share the progress of this study with the community, newsletters were published on a regular basis, and included information regarding new phase I clinical trials for GNE myopathy. The newsletters also served as a medium to bring attention to the importance of respiratory evaluation and care for respiratory insufficiency. CONCLUSION: The Japanese Remudy-GNE myopathy is useful for clarifying the natural history of the disease and recruiting patients with genetically-confirmed GNE myopathy for clinical trials. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13023-014-0150-4) contains supplementary material, which is available to authorized users

    Quality control of photosystem II: direct imaging of the changes in the thylakoid structure and distribution of FtsH proteases in spinach chloroplasts under light stress

    Get PDF
     Under light stress, the reaction center-binding protein D1 of PSII is photo-oxidatively damaged and removed from PSII complexes by proteases located in the chloroplast. A protease considered to be responsible for degradation of the damaged D1 protein is the metalloprotease FtsH. We showed previously that the active hexameric FtsH protease is abundant at the grana margin and the grana end membranes, and this homo-complex removes the photodamaged D1 protein in the grana. Here, we showed a change in the distribution of FtsH in spinach thylakoids during excessive illumination by transmission electron microscopy (TEM) and immunogold labeling of FtsH. The change in distribution of the protease was accompanied by structural changes to the thylakoids, which we detected using spinach leaves by TEM after chemical fixation of the samples. Quantitative analyses showed several characteristic changes in the structure of the thylakoids, including shrinkage of the grana, outward bending of the marginal portions of the thylakoids and an increase in the height of the grana stacks under excessive illumination. The increase in the height of the grana stacks may include swelling of the thylakoids and an increase in the partition gaps between the thylakoids. These data strongly suggest that excessive illumination induces partial unstacking of the thylakoids, which enables FtsH to access easily the photodamaged D1 protein. Finally three-dimensional tomography of the grana was recorded to observe the effect of light stress on the overall structure of the thylakoids

    Development of an epileptic seizure prediction algorithm using R–R intervals with self-attentive autoencoder

    Get PDF
    Epilepsy is a neurological disorder that may affect the autonomic nervous system (ANS) from 15 to 20 min before seizure onset, and disturbances of ANS affect R–R intervals (RRI) on an electrocardiogram (ECG). This study aims to develop a machine learning algorithm for predicting focal epileptic seizures by monitoring R–R interval (RRI) data in real time. The developed algorithm adopts a self-attentive autoencoder (SA-AE), which is a neural network for time-series data. The results of applying the developed seizure prediction algorithm to clinical data demonstrated that it functioned well in most patients; however, false positives (FPs) occurred in specific participants. In a future work, we will investigate the causes of FPs and optimize the developing seizure prediction algorithm to further improve performance using newly added clinical data
    corecore