581 research outputs found

    Thermal robustness of multipartite entanglement of the 1-D spin 1/2 XY model

    Full text link
    We study the robustness of multipartite entanglement of the ground state of the one-dimensional spin 1/2 XY model with a transverse magnetic field in the presence of thermal excitations, by investigating a threshold temperature, below which the thermal state is guaranteed to be entangled. We obtain the threshold temperature based on the geometric measure of entanglement of the ground state. The threshold temperature reflects three characteristic lines in the phase diagram of the correlation function. Our approach reveals a region where multipartite entanglement at zero temperature is high but is thermally fragile, and another region where multipartite entanglement at zero temperature is low but is thermally robust.Comment: Revised, 11 pages, 7 figure

    Simulating typical entanglement with many-body Hamiltonian dynamics

    Full text link
    We study the time evolution of the amount of entanglement generated by one dimensional spin-1/2 Ising-type Hamiltonians composed of many-body interactions. We investigate sets of states randomly selected during the time evolution generated by several types of time-independent Hamiltonians by analyzing the distributions of the amount of entanglement of the sets. We compare such entanglement distributions with that of typical entanglement, entanglement of a set of states randomly selected from a Hilbert space with respect to the unitarily invariant measure. We show that the entanglement distribution obtained by a time-independent Hamiltonian can simulate the average and standard deviation of the typical entanglement, if the Hamiltonian contains suitable many-body interactions. We also show that the time required to achieve such a distribution is polynomial in the system size for certain types of Hamiltonians.Comment: Revised, 11 pages, 7 figure

    Remote information concentration by GHZ state and by bound entangled state

    Get PDF
    We compare remote information concentration by a maximally entangled GHZ state with by an unlockable bound entangled state. We find that the bound entangled state is as useful as the GHZ state, even do better than the GHZ state in the context of communication security.Comment: 4 pages,1 figur

    Remote information concentration using a bound entangled state

    Get PDF
    Remote information concentration, the reverse process of quantum telecloning, is presented. In this scheme, quantum information originally from a single qubit, but now distributed into three spatially separated qubits, is remotely concentrated back to a single qubit via an initially shared entangled state without performing any global operations. This entangled state is an unlockable bound entangled state and we analyze its properties.Comment: 4 pages, 2 figure

    The geometric measure of entanglement for a symmetric pure state with positive amplitudes

    Get PDF
    In this paper for a class of symmetric multiparty pure states we consider a conjecture related to the geometric measure of entanglement: 'for a symmetric pure state, the closest product state in terms of the fidelity can be chosen as a symmetric product state'. We show that this conjecture is true for symmetric pure states whose amplitudes are all non-negative in a computational basis. The more general conjecture is still open.Comment: Similar results have been obtained independently and with different methods by T-C. Wei and S. Severini, see arXiv:0905.0012v

    Delocalization power of global unitary operations on quantum information

    Full text link
    We investigate how originally localized two pieces of quantum information represented by a tensor product of two unknown qudit states are delocalized by performing two-qudit global unitary operations. To characterize the delocalization power of global unitary operations on quantum information, we analyze the necessary and sufficient condition to deterministically relocalize one of the two pieces of quantum information to its original Hilbert space by using only LOCC. We prove that this LOCC one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent to a controlled-unitary operation. The delocalization power and the entangling power characterize different non-local properties of global unitary operations.Comment: 14 pages, 1 figur

    Survival of entanglement in thermal states

    Full text link
    We present a general sufficiency condition for the presence of multipartite entanglement in thermal states stemming from the ground state entanglement. The condition is written in terms of the ground state entanglement and the partition function and it gives transition temperatures below which entanglement is guaranteed to survive. It is flexible and can be easily adapted to consider entanglement for different splittings, as well as be weakened to allow easier calculations by approximations. Examples where the condition is calculated are given. These examples allow us to characterize a minimum gapping behavior for the survival of entanglement in the thermodynamic limit. Further, the same technique can be used to find noise thresholds in the generation of useful resource states for one-way quantum computing.Comment: 6 pages, 2 figures. Changes made in line with publication recommendations. Motivation and concequences of result clarified, with the addition of one more example, which applies the result to give noise thresholds for measurement based quantum computing. New author added with new result

    The chain rule implies Tsirelson's bound: an approach from generalized mutual information

    Full text link
    In order to analyze an information theoretical derivation of Tsirelson's bound based on information causality, we introduce a generalized mutual information (GMI), defined as the optimal coding rate of a channel with classical inputs and general probabilistic outputs. In the case where the outputs are quantum, the GMI coincides with the quantum mutual information. In general, the GMI does not necessarily satisfy the chain rule. We prove that Tsirelson's bound can be derived by imposing the chain rule on the GMI. We formulate a principle, which we call the no-supersignalling condition, which states that the assistance of nonlocal correlations does not increase the capability of classical communication. We prove that this condition is equivalent to the no-signalling condition. As a result, we show that Tsirelson's bound is implied by the nonpositivity of the quantitative difference between information causality and no-supersignalling.Comment: 23 pages, 8 figures, Added Section 2 and Appendix B, result unchanged, Added reference

    Entanglement molecules

    Get PDF
    We investigate the entanglement properties of multiparticle systems, concentrating on the case where the entanglement is robust against disposal of particles. Two qubits -belonging to a multipartite system- are entangled in this sense iff their reduced density matrix is entangled. We introduce a family of multiqubit states, for which one can choose for any pair of qubits independently whether they should be entangled or not as well as the relative strength of the entanglement, thus providing the possibility to construct all kinds of ''Entanglement molecules''. For some particular configurations, we also give the maximal amount of entanglement achievable.Comment: 4 pages, 1 figur

    Quantum cobwebs: Universal entangling of quantum states

    Full text link
    Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and study their salient features. Using shared-ZSA state, local operation and classical communication we give a protocol for creating multipartite entangled states of an unknown quantum state with two types of reference states at remote places. This provides a way of encoding an unknown pure qubit state into a multiqubit entangled state. We quantify the amount of classical and quantum resources required to create universal entangled states. This is possibly a strongest form of quantum bit hiding with multiparties.Comment: Invited talk in II Winter Institute on FQTQO: Quantum Information Processing, held at S. N. Bose Center for Basic Science, Kolkata, during Jan 2-11, 2002. (To appear in Pramana-J. of Physics, 2002.
    corecore