581 research outputs found
Thermal robustness of multipartite entanglement of the 1-D spin 1/2 XY model
We study the robustness of multipartite entanglement of the ground state of
the one-dimensional spin 1/2 XY model with a transverse magnetic field in the
presence of thermal excitations, by investigating a threshold temperature,
below which the thermal state is guaranteed to be entangled. We obtain the
threshold temperature based on the geometric measure of entanglement of the
ground state. The threshold temperature reflects three characteristic lines in
the phase diagram of the correlation function. Our approach reveals a region
where multipartite entanglement at zero temperature is high but is thermally
fragile, and another region where multipartite entanglement at zero temperature
is low but is thermally robust.Comment: Revised, 11 pages, 7 figure
Simulating typical entanglement with many-body Hamiltonian dynamics
We study the time evolution of the amount of entanglement generated by one
dimensional spin-1/2 Ising-type Hamiltonians composed of many-body
interactions. We investigate sets of states randomly selected during the time
evolution generated by several types of time-independent Hamiltonians by
analyzing the distributions of the amount of entanglement of the sets. We
compare such entanglement distributions with that of typical entanglement,
entanglement of a set of states randomly selected from a Hilbert space with
respect to the unitarily invariant measure. We show that the entanglement
distribution obtained by a time-independent Hamiltonian can simulate the
average and standard deviation of the typical entanglement, if the Hamiltonian
contains suitable many-body interactions. We also show that the time required
to achieve such a distribution is polynomial in the system size for certain
types of Hamiltonians.Comment: Revised, 11 pages, 7 figure
Remote information concentration by GHZ state and by bound entangled state
We compare remote information concentration by a maximally entangled GHZ
state with by an unlockable bound entangled state. We find that the bound
entangled state is as useful as the GHZ state, even do better than the GHZ
state in the context of communication security.Comment: 4 pages,1 figur
Remote information concentration using a bound entangled state
Remote information concentration, the reverse process of quantum telecloning,
is presented. In this scheme, quantum information originally from a single
qubit, but now distributed into three spatially separated qubits, is remotely
concentrated back to a single qubit via an initially shared entangled state
without performing any global operations. This entangled state is an unlockable
bound entangled state and we analyze its properties.Comment: 4 pages, 2 figure
The geometric measure of entanglement for a symmetric pure state with positive amplitudes
In this paper for a class of symmetric multiparty pure states we consider a
conjecture related to the geometric measure of entanglement: 'for a symmetric
pure state, the closest product state in terms of the fidelity can be chosen as
a symmetric product state'. We show that this conjecture is true for symmetric
pure states whose amplitudes are all non-negative in a computational basis. The
more general conjecture is still open.Comment: Similar results have been obtained independently and with different
methods by T-C. Wei and S. Severini, see arXiv:0905.0012v
Delocalization power of global unitary operations on quantum information
We investigate how originally localized two pieces of quantum information
represented by a tensor product of two unknown qudit states are delocalized by
performing two-qudit global unitary operations. To characterize the
delocalization power of global unitary operations on quantum information, we
analyze the necessary and sufficient condition to deterministically relocalize
one of the two pieces of quantum information to its original Hilbert space by
using only LOCC. We prove that this LOCC one-piece relocalization is possible
if and only if the global unitary operation is local unitary equivalent to a
controlled-unitary operation. The delocalization power and the entangling power
characterize different non-local properties of global unitary operations.Comment: 14 pages, 1 figur
Survival of entanglement in thermal states
We present a general sufficiency condition for the presence of multipartite
entanglement in thermal states stemming from the ground state entanglement. The
condition is written in terms of the ground state entanglement and the
partition function and it gives transition temperatures below which
entanglement is guaranteed to survive. It is flexible and can be easily adapted
to consider entanglement for different splittings, as well as be weakened to
allow easier calculations by approximations. Examples where the condition is
calculated are given. These examples allow us to characterize a minimum gapping
behavior for the survival of entanglement in the thermodynamic limit. Further,
the same technique can be used to find noise thresholds in the generation of
useful resource states for one-way quantum computing.Comment: 6 pages, 2 figures. Changes made in line with publication
recommendations. Motivation and concequences of result clarified, with the
addition of one more example, which applies the result to give noise
thresholds for measurement based quantum computing. New author added with new
result
The chain rule implies Tsirelson's bound: an approach from generalized mutual information
In order to analyze an information theoretical derivation of Tsirelson's
bound based on information causality, we introduce a generalized mutual
information (GMI), defined as the optimal coding rate of a channel with
classical inputs and general probabilistic outputs. In the case where the
outputs are quantum, the GMI coincides with the quantum mutual information. In
general, the GMI does not necessarily satisfy the chain rule. We prove that
Tsirelson's bound can be derived by imposing the chain rule on the GMI. We
formulate a principle, which we call the no-supersignalling condition, which
states that the assistance of nonlocal correlations does not increase the
capability of classical communication. We prove that this condition is
equivalent to the no-signalling condition. As a result, we show that
Tsirelson's bound is implied by the nonpositivity of the quantitative
difference between information causality and no-supersignalling.Comment: 23 pages, 8 figures, Added Section 2 and Appendix B, result
unchanged, Added reference
Entanglement molecules
We investigate the entanglement properties of multiparticle systems,
concentrating on the case where the entanglement is robust against disposal of
particles. Two qubits -belonging to a multipartite system- are entangled in
this sense iff their reduced density matrix is entangled. We introduce a family
of multiqubit states, for which one can choose for any pair of qubits
independently whether they should be entangled or not as well as the relative
strength of the entanglement, thus providing the possibility to construct all
kinds of ''Entanglement molecules''. For some particular configurations, we
also give the maximal amount of entanglement achievable.Comment: 4 pages, 1 figur
Quantum cobwebs: Universal entangling of quantum states
Entangling an unknown qubit with one type of reference state is generally
impossible. However, entangling an unknown qubit with two types of reference
states is possible. To achieve this, we introduce a new class of states called
zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and
study their salient features. Using shared-ZSA state, local operation and
classical communication we give a protocol for creating multipartite entangled
states of an unknown quantum state with two types of reference states at remote
places. This provides a way of encoding an unknown pure qubit state into a
multiqubit entangled state. We quantify the amount of classical and quantum
resources required to create universal entangled states. This is possibly a
strongest form of quantum bit hiding with multiparties.Comment: Invited talk in II Winter Institute on FQTQO: Quantum Information
Processing, held at S. N. Bose Center for Basic Science, Kolkata, during Jan
2-11, 2002. (To appear in Pramana-J. of Physics, 2002.
- …