14 research outputs found

    Vasculature-driven stem cell population coordinates tissue scaling in dynamic organs

    Get PDF
    Stem cell (SC) proliferation and differentiation organize tissue homeostasis. However, how SCs regulate coordinate tissue scaling in dynamic organs remain unknown. Here, we delineate SC regulations in dynamic skin. We found that interfollicular epidermal SCs (IFESCs) shape basal epidermal proliferating clusters (EPCs) in expanding abdominal epidermis of pregnant mice and proliferating plantar epidermis. EPCs consist of IFESC-derived Tbx3⁺–basal cells (Tbx3⁺-BCs) and their neighboring cells where Adam8–extracellular signal–regulated kinase signaling is activated. Clonal lineage tracing revealed that Tbx3⁺-BC clones emerge in the abdominal epidermis during pregnancy, followed by differentiation after parturition. In the plantar epidermis, Tbx3⁺-BCs are sustained as long-lived SCs to maintain EPCs invariably. We showed that Tbx3⁺-BCs are vasculature-dependent IFESCs and identified mechanical stretch as an external cue for the vasculature-driven EPC formation. Our results uncover vasculature-mediated IFESC regulations, which explain how the epidermis adjusts its size in orchestration with dermal constituents in dynamic skin

    Regulation of SLD5 gene expression by miR-370 during acute growth of cancer cells

    Get PDF
    金沢大学医薬保健研究域医学系SLD5 is a member of the GINS complex, essential for DNA replication in eukaryotes. It has been reported that SLD5 is involved in early embryogenesis in the mouse, and cell cycle progression and genome integrity in Drosophila. SLD5 may be involved in malignant tumor progression, but its relevance in human cancer has not been determined. Here, we found strong SLD5 expression in both human bladder cancer tissues from patients and cell lines. Knockdown of SLD5 using small interfering RNA resulted in reduction of cell growth both in vitro and an in vivo xenograft model. Moreover, we found that high levels of SLD5 in bladder cancer cells result from downregulation of microRNA (miR)-370 that otherwise suppresses its expression. High level expression of DNA-methyltransferase (DNMT) 1 and IL-6 were also observed in bladder cancer cells. Knockdown of IL-6 led to downregulation of DNMT1 and SLD5 expression, suggesting that IL-6-induced overexpression of DNMT1 suppresses miR-370, resulting in high SLD5 expression. Our findings could contribute to understanding tumorigenic processes and progression of human bladder cancer, whereby inhibition of SLD5 could represent a novel strategy to prevent tumor growth

    Lysophosphatidic Acid Receptor 4 Activation Augments Drug Delivery in Tumors by Tightening Endothelial Cell-Cell Contact

    No full text
    Vascular normalization in tumors may improve drug delivery and anti-tumor immunity. Angiogenesis inhibitors induce hypoxia, which may facilitate malignant progression; therefore, we investigated other methods to promote vascular maturation. Here, we show that lysophosphatidic acid (LPA) enhances blood flow by promoting fine vascular networks, thereby improving vascular permeability and suppressing tumor growth when combined with anti-cancer drug treatment. Six different G protein-coupled receptors have been identified as LPA receptors (LPA1–6). In studies using mutant mice, we found that LPA4 is involved in vascular network formation. LPA4 activation induces circumferential actin bundling beneath the cell membrane and enhances linear adherens junction formation by VE-cadherin in endothelial cells. Therefore, we conclude that activation of LPA4 is a promising approach for vascular regulation

    Indispensable role of Galectin-3 in promoting quiescence of hematopoietic stem cells

    Get PDF
    金沢大学医薬保健研究域医学系Hematopoietic stem cells (HSCs) in adult bone marrow (BM) are usually maintained in a state of quiescence. The cellular mechanism coordinating the balance between HSC quiescence and differentiation is not fully understood. Here, we report that galactose-binding lectin-3 (galectin-3; Gal-3) is upregulated by Tie2 or Mpl activation to maintain quiescence. Conditional overexpression of Gal-3 in mouse HSCs under the transcriptional control of Tie2 or Vav1 promoters (Gal-3 Tg) causes cell cycle retardation via induction of p21. Conversely, the cell cycle of long-term repopulating HSCs (LT-HSCs) in Gal-3-deficient (Gal-3-/-) mice is accelerated, resulting in their exhaustion. Mechanistically, Gal-3 regulates p21 transcription by forming a complex with Sp1, thus blocking cell cycle entry. These results demonstrate that Gal-3 is a negative regulator of cell-cycling in HSCs and plays a crucial role in adult hematopoiesis to prevent HSC exhaustion. © 2021, The Author(s)
    corecore