61 research outputs found

    Thermoelectric study of dissipative quantum dot heat engines

    Full text link
    This paper examines the thermoelectric response of a dissipative quantum dot heat engine based on the Anderson-Holstein model in two relevant operating limits: (i) when the dot phonon modes are out of equilibrium, and (ii) when the dot phonon modes are strongly coupled to a heat bath. In the first case, a detailed analysis of the physics related to the interplay between the quantum dot level quantization, the on-site Coulomb interaction and the electron-phonon coupling on the thermoelectric performance reveals that an n-type heat engine performs better than a p-type heat engine. In the second case, with the aid of the dot temperature estimated by incorporating a {\it{thermometer bath}}, it is shown that the dot temperature deviates from the bath temperature as electron-phonon interaction becomes stronger. Consequently, it is demonstrated that the dot temperature controls the direction of phonon heat currents, thereby influencing the thermoelectric performance. Finally, the conditions on the maximum efficiency with varying phonon couplings between the dot and all the other macroscopic bodies are analyzed in order to reveal the nature of the optimum junction.Comment: 10 pages, 9 figures, To be published in Phys Rev.

    Quantum thermoelectrics based on 2-D Semi-Dirac materials

    Full text link
    We show that a gap parameter can fully describe the merging of Dirac cones in semi-Dirac materials from KK- and KK^\prime-points into the common MM-point in the Brillouin zone. We predict that the gap parameter manifests itself by enhancing the thermoelectric figure of merit zTzT as the chemical potential crosses the gap followed by a sign change in the Seebeck coefficient around the same point. Subsequently, we show that there is also a trade-off feature between the maximum power delivered and the efficiency when the chemical potential crosses the gap parameter. An optimal operating point that minimizes the power-efficiency trade-off is consequently singled out for the best thermoelectric performance. Our work paves the way for the use of 2D semi-Dirac materials for thermoelectric applications.Comment: 5 pages, 5 figure

    Role of dual nuclear baths on spin blockade leakage current bistabilities

    Full text link
    Spin-blockaded electronic transport across a double quantum dot (DQD) system represents an important advancement in the area of spin-based quantum information. The basic mechanism underlying the blockade is the formation of a blocking triplet state. The bistability of the leakage current as a function of the applied magnetic field in this regime is believed to arise from the effect of nuclear Overhauser fields on spin-flip transitions between the blocking triplet and the conducting singlet states. The objective of this paper is to present the nuances of considering a two bath model on the experimentally observed current bistability by employing a self consistent simulation of the nuclear spin dynamics coupled with the electronic transport of the DQD set up. In doing so, we first discuss the important subtleties involved in the microscopic derivation of the hyperfine mediated spin flip rates. We then give insights as to how the differences between the two nuclear baths and the resulting difference Overhauser field affect the two-electron states of the DQD, and their connection with the experimentally observed current hysteresis curve.Comment: 9 pages, 5 figure

    Classical information driven quantum dot thermal machines

    Full text link
    We analyze the transient response of quantum dot thermal machines that can be driven by hyperfine interaction acting as a source of classical information. Our setup comprises a quantum dot coupled to two contacts that drive heat flow while coupled to a nuclear spin bath. The quantum dot thermal machines operate both as batteries and as engines, depending on the parameter range. The electrons in the quantum dot interact with the nuclear spins via hyperfine spin-flip processes as typically seen in solid state systems such as GaAs quantum dots. The hyperfine interaction in such systems, which is often treated as a deterrent for quantum information processing, can favorably be regarded as a driving agent for classical information flow into a heat engine setup. We relate this information flow to Landauer's erasure of the nuclear spin bath, leading to a battery operation. We further demonstrate that the setup can perform as a transient power source even under a voltage bias across the dot. Focusing on the transient thermoelectric operation, our analysis clearly indicates the role of Landauer's erasure to deliver a higher output power than a conventional quantum dot thermoelectric setup and an efficiency greater than that of an identical Carnot cycle in steady state, which is consistent with recently proposed bounds on efficiency for systems subject to a feedback controller. The role of nuclear spin relaxation processes on these aspects is also studied. Finally, we introduce the Coulomb interaction in the dot and analyze the transient thermoelectric response of the system. Our results elaborate on the effective use of somewhat undesirable scattering processes as a non-equilibrium source of Shannon information flow in thermal machines and the possibilities that may arise from the use of a quantum information source.Comment: 10 pages, 7 figure
    corecore