250 research outputs found

    Optical Transition and Momentum Transfer in Atomic Wave Packets

    Get PDF
    It is shown that the population Rabi-floppings in a lossless two-level atom, interacting with a monochromatic electromagnetic field, in general are convergent in time. The well-known continuous floppings take place because the restricted choosing of initial conditions, that is when the atom initially is chosen on ground or excited level before the interaction, simultaneously having a definite value of momentum there. The convergence of Rabi-floppings in atomic wave-packet-states is a direct consequence of Doppler effect on optical transition rates (Rabi-frequencies): it gradually leads to ''irregular'' chaotic-type distributions of momentum in ground and excited energy levels, smearing the amplitudes of Rabi-floppings. Conjointly with Rabi-floppings, the coherent accumulation of momentum on each internal energy level monotonically diminishes too.Comment: 6 pages, 10 Figure

    Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms

    Full text link
    We present a new method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation travelling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of used linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: non-saturating dependence of refractive index on the dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation in the wavelength region of about ten micrometers (the range of CO_2 laser) or larger

    Coherence as ultrashort pulse train generator

    Full text link
    Intense, well-controlled regular light pulse trains start to play a crucial role in many fields of physics. We theoretically demonstrate a very simple and robust technique for generating such periodic ultrashort pulses from a continuous probe wave which propagates in a dispersive thermal gas media

    Finite temperature coherence of the ideal Bose gas in an optical lattice

    Full text link
    In current experiments with cold quantum gases in periodic potentials, interference fringe contrast is typically the easiest signal in which to look for effects of non-trivial many-body dynamics. In order better to calibrate such measurements, we analyse the background effect of thermal decoherence as it occurs in the absence of dynamical interparticle interactions. We study the effect of optical lattice potentials, as experimentally applied, on the condensed fraction of a non-interacting Bose gas in local thermal equilibrium at finite temperatures. We show that the experimentally observed decrease of the condensate fraction in the presence of the lattice can be attributed, up to a threshold lattice height, purely to ideal gas thermodynamics; conversely we confirm that sharper decreases in first-order coherence observed in stronger lattices are indeed attributable to many-body physics. Our results also suggest that the fringe visibility 'kinks' observed in F.Gerbier et al., Phys. Rev. Lett. 95, 050404 (2005) may be explained in terms of the competition between increasing lattice strength and increasing mean gas density, as the gaussian profile of the red-detuned lattice lasers also increases the effective strength of the harmonic trap

    Diffraction and trapping in circular lattices

    Full text link
    When a single two-level atom interacts with a pair of Laguerre-Gaussian beams with opposite helicity, this leads to an efficient exchange of angular momentum between the light field and the atom. When the radial motion is trapped by an additional potential, the wave function of a single localized atom can be split into components that rotate in opposite direction. This suggests a novel scheme for atom interferometry without mirror pulses. Also atoms in this configuration can be bound into a circular lattice
    • …
    corecore