390 research outputs found
Active rejection-enhancement of spectrally adaptive liquid crystal geometric phase vortex coronagraphs
Geometric phase optical elements made of space-variant anisotropic media
customarily find their optimal operating conditions when the half-wave
retardance condition is fulfilled, which allows imparting
polarization-dependent changes to an incident wavefront. In practice, intrinsic
limitations of man-made manufacturing process or the finite spectrum of the
light source lead to a deviation from the ideal behavior. This implies the
implementation of strategies to compensate for the associated efficiency
losses. Here we report on how the intrinsic tunable features of self-engineered
liquid crystal topological defects can be used to enhance the rejection
capabilities of spectrally adaptive vector vortex coronagraphs. We also discuss
the extent of which current models enable to design efficient devices
Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide
AbstractPlant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They may regulate oxygen delivery at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses
Nucleon matrix elements and baryon masses in the Dirac orbital model
Using the expansion of the baryon wave function in a series of products of
single quark bispinors (Dirac orbitals), the nonsinglet axial and tensor
charges of a nucleon are calculated. The leading term yields in
good agreement with experiment. Calculation is essentially parameter-free and
depends only on the strong coupling constant value . The importance
of lower Dirac bispinor component, yielding 18% to the wave function
normalization is stressed. As a check, the baryon decuplet masses in the
formalism of this model are also computed using standard values of the string
tension and the strange quark mass ; the results being in a good
agreement with experiment.Comment: 8 pages, 2 tables; LaTeX2
Current approaches to measure nitric oxide in plants
Nitric oxide (NO) is now established as an important signalling molecule in plants where it influences growth, development, and responses to stress. Despite extensive research, the most appropriate methods to measure and localize these signalling radicals are debated and still need investigation. Many confounding factors such as the presence of other reactive intermediates, scavenging enzymes, and compartmentation influence how accurately each can be measured. Further, these signalling radicals have short half-lives ranging from seconds to minutes based on the cellular redox condition. Hence, it is necessary to use sensitive and specific methods in order to understand the contribution of each signalling molecule to various biological processes. In this review, we summarize the current knowledge on NO measurement in plant samples, via various methods. We also discuss advantages, limitations, and wider applications of each method
Pairing in two-dimensional boson-fermion mixtures
The possibilities of pairing in two-dimensional boson-fermion mixtures are
carefully analyzed. It is shown that the boson-induced attraction between two
identical fermions dominates the p-wave pairing at low density. For a given
fermion density, the pairing gap becomes maximal at a certain optimal boson
concentration. The conditions for observing pairing in current experiments are
discussedComment: 10 pages, 5 figs, revtex
Boundary conditions in the Unruh problem
We have analyzed the Unruh problem in the frame of quantum field theory and
have shown that the Unruh quantization scheme is valid in the double Rindler
wedge rather than in Minkowski spacetime. The double Rindler wedge is composed
of two disjoint regions (- and -wedges of Minkowski spacetime) which are
causally separated from each other. Moreover the Unruh construction implies
existence of boundary condition at the common edge of - and -wedges in
Minkowski spacetime. Such boundary condition may be interpreted as a
topological obstacle which gives rise to a superselection rule prohibiting any
correlations between - and - Unruh particles. Thus the part of the field
from the -wedge in no way can influence a Rindler observer living in the
-wedge and therefore elimination of the invisible "left" degrees of freedom
will take no effect for him. Hence averaging over states of the field in one
wedge can not lead to thermalization of the state in the other. This result is
proved both in the standard and algebraic formulations of quantum field theory
and we conclude that principles of quantum field theory does not give any
grounds for existence of the "Unruh effect".Comment: 31 pages,1 figur
Non-Equilibrium Quasiclassical Theory for Josephson Structures
We present a non-equilibrium quasiclassical formalism suitable for studying
linear response ac properties of Josephson junctions. The non-equilibrium
self-consistency equations are satisfied, to very good accuracy, already in
zeroth iteration. We use the formalism to study ac Josephson effect in a
ballistic superconducting point contact. The real and imaginary parts of the ac
linear conductance are calculated both analytically (at low frequencies) and
numerically (at arbitrary frequency). They show strong temperature, frequency,
and phase dependence. Many anomalous properties appear near phi = pi. We
ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR
Chiral Lagrangian with confinement from the QCD Lagrangian
An effective Lagrangian for the light quark in the field of a static source
is derived systematically using the exact field correlator expansion. The
lowest Gaussian term is bosonized using nonlocal colorless bosonic fields and a
general structure of effective chiral Lagrangian is obtained containing all set
of fields. The new and crucial result is that the condensation of scalar
isoscalar field which is a usual onset of chiral symmetry breaking and is
constant in space-time, assumes here the form of the confining string and
contributes to the confining potential, while the rest bosonic fields describe
mesons with the q\bar q quark structure and pseudoscalars play the role of
Nambu-Goldstone fields. Using derivative expansion the effective chiral
Lagrangian is deduced containing both confinement and chiral effects for
heavy-light mesons. The pseudovector quark coupling constant is computed to be
exactly unity in the local limit,in agreement with earlier large N_c arguments.Comment: LaTeX2e, 17 page
- …