390 research outputs found

    Active rejection-enhancement of spectrally adaptive liquid crystal geometric phase vortex coronagraphs

    Full text link
    Geometric phase optical elements made of space-variant anisotropic media customarily find their optimal operating conditions when the half-wave retardance condition is fulfilled, which allows imparting polarization-dependent changes to an incident wavefront. In practice, intrinsic limitations of man-made manufacturing process or the finite spectrum of the light source lead to a deviation from the ideal behavior. This implies the implementation of strategies to compensate for the associated efficiency losses. Here we report on how the intrinsic tunable features of self-engineered liquid crystal topological defects can be used to enhance the rejection capabilities of spectrally adaptive vector vortex coronagraphs. We also discuss the extent of which current models enable to design efficient devices

    Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide

    Get PDF
    AbstractPlant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They may regulate oxygen delivery at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses

    Nucleon matrix elements and baryon masses in the Dirac orbital model

    Get PDF
    Using the expansion of the baryon wave function in a series of products of single quark bispinors (Dirac orbitals), the nonsinglet axial and tensor charges of a nucleon are calculated. The leading term yields gA=1.27g_A = 1.27 in good agreement with experiment. Calculation is essentially parameter-free and depends only on the strong coupling constant value αs\alpha_s. The importance of lower Dirac bispinor component, yielding 18% to the wave function normalization is stressed. As a check, the baryon decuplet masses in the formalism of this model are also computed using standard values of the string tension σ\sigma and the strange quark mass msm_s; the results being in a good agreement with experiment.Comment: 8 pages, 2 tables; LaTeX2

    Current approaches to measure nitric oxide in plants

    Get PDF
    Nitric oxide (NO) is now established as an important signalling molecule in plants where it influences growth, development, and responses to stress. Despite extensive research, the most appropriate methods to measure and localize these signalling radicals are debated and still need investigation. Many confounding factors such as the presence of other reactive intermediates, scavenging enzymes, and compartmentation influence how accurately each can be measured. Further, these signalling radicals have short half-lives ranging from seconds to minutes based on the cellular redox condition. Hence, it is necessary to use sensitive and specific methods in order to understand the contribution of each signalling molecule to various biological processes. In this review, we summarize the current knowledge on NO measurement in plant samples, via various methods. We also discuss advantages, limitations, and wider applications of each method

    Boundary conditions in the Unruh problem

    Get PDF
    We have analyzed the Unruh problem in the frame of quantum field theory and have shown that the Unruh quantization scheme is valid in the double Rindler wedge rather than in Minkowski spacetime. The double Rindler wedge is composed of two disjoint regions (RR- and LL-wedges of Minkowski spacetime) which are causally separated from each other. Moreover the Unruh construction implies existence of boundary condition at the common edge of RR- and LL-wedges in Minkowski spacetime. Such boundary condition may be interpreted as a topological obstacle which gives rise to a superselection rule prohibiting any correlations between rr- and ll- Unruh particles. Thus the part of the field from the LL-wedge in no way can influence a Rindler observer living in the RR-wedge and therefore elimination of the invisible "left" degrees of freedom will take no effect for him. Hence averaging over states of the field in one wedge can not lead to thermalization of the state in the other. This result is proved both in the standard and algebraic formulations of quantum field theory and we conclude that principles of quantum field theory does not give any grounds for existence of the "Unruh effect".Comment: 31 pages,1 figur

    Non-Equilibrium Quasiclassical Theory for Josephson Structures

    Full text link
    We present a non-equilibrium quasiclassical formalism suitable for studying linear response ac properties of Josephson junctions. The non-equilibrium self-consistency equations are satisfied, to very good accuracy, already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting point contact. The real and imaginary parts of the ac linear conductance are calculated both analytically (at low frequencies) and numerically (at arbitrary frequency). They show strong temperature, frequency, and phase dependence. Many anomalous properties appear near phi = pi. We ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR

    Chiral Lagrangian with confinement from the QCD Lagrangian

    Get PDF
    An effective Lagrangian for the light quark in the field of a static source is derived systematically using the exact field correlator expansion. The lowest Gaussian term is bosonized using nonlocal colorless bosonic fields and a general structure of effective chiral Lagrangian is obtained containing all set of fields. The new and crucial result is that the condensation of scalar isoscalar field which is a usual onset of chiral symmetry breaking and is constant in space-time, assumes here the form of the confining string and contributes to the confining potential, while the rest bosonic fields describe mesons with the q\bar q quark structure and pseudoscalars play the role of Nambu-Goldstone fields. Using derivative expansion the effective chiral Lagrangian is deduced containing both confinement and chiral effects for heavy-light mesons. The pseudovector quark coupling constant is computed to be exactly unity in the local limit,in agreement with earlier large N_c arguments.Comment: LaTeX2e, 17 page
    corecore