6 research outputs found

    Disparity Estimation Using Stereo Images With Different Focal Lengths

    Full text link

    Neuromorphic Character Recognition System With Two PCMO Memristors as a Synapse

    Full text link

    A Long Short-Term Memory (LSTM) Network for Hourly Estimation of PM2.5 Concentration in Two Cities of South Korea

    Full text link
    Air pollution not only damages the environment but also leads to various illnesses such as respiratory tract and cardiovascular diseases. Nowadays, estimating air pollutants concentration is becoming very important so that people can prepare themselves for the hazardous impact of air pollution beforehand. Various deterministic models have been used to forecast air pollution. In this study, along with various pollutants and meteorological parameters, we also use the concentration of the pollutants predicted by the community multiscale air quality (CMAQ) model which are strongly related to PM 2.5 concentration. After combining these parameters, we implement various machine learning models to predict the hourly forecast of PM 2.5 concentration in two big cities of South Korea and compare their results. It has been shown that Long Short Term Memory network outperforms other well-known gradient tree boosting models, recurrent, and convolutional neural networks
    corecore