18 research outputs found
Adaptation to Water Stress in Soybean: Morphology to Genetics
Soybean (Glycine max L.) is the most important legume and oilseed crop. As a leguminous crop, it plays an irreplaceable role towards the sustainable agricultural system with biological nitrogen fixation. However, its production can be dramatically decreased by the occurrence of water stress. Water stress including drought and flooding induces the morpho-physiological and biochemical changes at different growth stages, which negatively affects the adaptability and yield of soybean. Genetic diversity that ensures productivity in challenging environment exists within germplasm, their wild relatives and species that are adapted to the water stress. The discovery of gene mapping, QTLs associated with root traits, slow canopy wilting, nitrogen fixation and flooding tolerance have accomplished significant progress in breeding programs. Identification of drought-responsive genes and transcription factors such as WRKY, DREBs, ERFs, ZIP, ZFP, MYB and NAC are valuable to ameliorate the water stress in soybean. Understanding the genetic mechanism using transcriptomic and proteomic approaches would be the ultimate choice for mitigating the water stress. Integration of well-designed soybean breeding program coupled with omic techniques would pave the way for developing drought and flooding resilient soybean cultivars
Genome-Wide Characterization of VDAC Gene Family in Soybean (Glycine max L.) and In Silico Expression Profiling in Response to Drought and Salt Stress
Soybean (Glycine max L.) is grown worldwide to obtain edible oil, livestock feed, and biodiesel. However, drought and salt stress are becoming serious challenges to global soybean cultivation as they retard the growth of soybean plants and cause significant yield losses. Voltage-dependent anion-selective channel (VDAC) proteins are well-known for their role in drought and salt tolerance in crop plants. In this study, we identified 111 putative VDAC genes randomly distributed in genomes of 14 plant species, including cultivated soybean (Glycine max) and wild soybean (Glycine soja). The comparative phylogenetic studies classified these genes into six different clades and found the highest structural similarities among VDAC genes of G. max and G. soja. From the conserved domain database, porin-3 (PF01459) was found to be the conserved domain in all VDAC proteins. Furthermore, gene annotation studies revealed the role of GmaVDAC proteins in voltage-gated anion channel activity. These proteins were also found to interact with other proteins, especially mitochondrial receptors. A total of 103 miRNAs were predicted to target fifteen GmaVDAC genes. In G. max, these genes were found to be segmentally duplicated and randomly distributed on twelve chromosomes. Transcriptomic analysis revealed that the GmaVDAC18.2 gene showed overexpression in root nodules, whereas the GmaVDAC9.1, GmaVDAC18.1, and GmaVDAC18.2 genes showed overexpression under drought and salt stress conditions
Principal Component and Cluster Analyses as Tools in the Assessment of Genetic Diversity for Late Season Cauliflower Genotypes
Genome-wide association study provides new insight into the underlying mechanism of drought tolerance during seed germination stage in soybean
Abstract Drought is one of the major environmental issues that reduce crop yield. Seed germination is a crucial stage of plant development in all crop plants, including soybean. In soybean breeding, information about genetic mechanism of drought tolerance has great importance. However, at germination stage, there is relatively little knowledge on the genetic basis of soybean drought resistance. The objective of this work was to find the quantitative trait nucleotides (QTNs) linked to drought tolerance related three traits using a genome-wide association study (GWAS), viz., germination rate (GR), root length (RL), and whole seedling length (WSL), using germplasm population of 240 soybean PIs with 34,817 SNPs genotype data having MAF > 0.05. It was observed that heritability (H2 ) for GR, WSL, and RL across both environments (2020, and 2019) were high in the range of 0.76–0.99, showing that genetic factors play a vital role in drought tolerance as compared to environmental factors. A number of 23 and 27 QTNs were found to be linked to three traits using MLM and mrMLM, respectively. Three significant QTNs, qGR8-1, qWSL13-1, and qRL-8, were identified using both MLM and mrMLM methods among these QTNs. QTN8, located on chromosome 8 was consistently linked to two traits (GR and RL). The area (± 100 Kb) associated with this QTN was screened for drought tolerance based on gene annotation. Fifteen candidate genes were found by this screening. Based on the expression data, four candidate genes i.e. Glyma08g156800, Glyma08g160000, Glyma08g162700, and Glyma13g249600 were found to be linked to drought tolerance regulation in soybean. Hence, the current study provides evidence to understand the genetic constitution of drought tolerance during the germination stage and identified QTNs or genes could be utilized in molecular breeding to enhance the yield under drought stress
Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance
Comprehensive RNA-seq Analysis Revealed Molecular Pathways and Genes Associated with Drought Tolerance in Wild Soybean (Glycine soja Sieb. & Zucc.)
Omics and CRISPR-Cas9 Approaches for Molecular Insight, Functional Gene Analysis, and Stress Tolerance Development in Crops
Plants are regularly exposed to biotic and abiotic stresses that adversely affect agricultural production. Omics has gained momentum in the last two decades, fueled by statistical methodologies, computational capabilities, mass spectrometry, nucleic-acid sequencing, and peptide-sequencing platforms. Functional genomics—especially metabolomics, transcriptomics, and proteomics—have contributed substantially to plant molecular responses to stress. Recent progress in reverse and forward genetics approaches have mediated high-throughput techniques for identifying stress-related genes. Furthermore, web-based genetic databases have mediated bioinformatics techniques for detecting families of stress-tolerant genes. Gene ontology (GO) databases provide information on the gene product’s functional features and help with the computational estimation of gene function. Functional omics data from multiple platforms are useful for positional cloning. Stress-tolerant plants have been engineered using stress response genes, regulatory networks, and pathways. The genome-editing tool, CRISPR-Cas9, reveals the functional features of several parts of the plant genome. Current developments in CRISPR, such as de novo meristem induction genome-engineering in dicots and temperature-tolerant LbCas12a/CRISPR, enable greater DNA insertion precision. This review discusses functional omics for molecular insight and CRISPR-Cas9-based validation of gene function in crop plants. Omics and CRISPR-Cas9 are expected to garner knowledge on molecular systems and gene function and stress-tolerant crop production
Omics and CRISPR-Cas9 Approaches for Molecular Insight, Functional Gene Analysis, and Stress Tolerance Development in Crops
Plants are regularly exposed to biotic and abiotic stresses that adversely affect agricultural production. Omics has gained momentum in the last two decades, fueled by statistical methodologies, computational capabilities, mass spectrometry, nucleic-acid sequencing, and peptide-sequencing platforms. Functional genomics—especially metabolomics, transcriptomics, and proteomics—have contributed substantially to plant molecular responses to stress. Recent progress in reverse and forward genetics approaches have mediated high-throughput techniques for identifying stress-related genes. Furthermore, web-based genetic databases have mediated bioinformatics techniques for detecting families of stress-tolerant genes. Gene ontology (GO) databases provide information on the gene product’s functional features and help with the computational estimation of gene function. Functional omics data from multiple platforms are useful for positional cloning. Stress-tolerant plants have been engineered using stress response genes, regulatory networks, and pathways. The genome-editing tool, CRISPR-Cas9, reveals the functional features of several parts of the plant genome. Current developments in CRISPR, such as de novo meristem induction genome-engineering in dicots and temperature-tolerant LbCas12a/CRISPR, enable greater DNA insertion precision. This review discusses functional omics for molecular insight and CRISPR-Cas9-based validation of gene function in crop plants. Omics and CRISPR-Cas9 are expected to garner knowledge on molecular systems and gene function and stress-tolerant crop production.</jats:p
