89 research outputs found

    Longitudinal Patterns of Ethical Organisational Culture as a Context for Leaders’ Well-Being: Cumulative Effects Over 6 Years

    Get PDF
    The aim of this longitudinal study was to investigate the temporal dynamics of ethical organisational culture and how it associates with well-being at work when potential changes in ethical culture are measured over an extended period of 6 years. We used a person-centred study design, which allowed us to detect both typical and atypical patterns of ethical culture stability as well as change among a sample of leaders. Based on latent profile analysis and hierarchical linear modelling we found longitudinal, concurrent relations and cumulative gain and loss cycles between different ethical culture patterns and leaders’ well-being. Leaders in the strongest ethical culture pattern experienced the highest level of work engagement and a decreasing level of ethical dilemmas and stress. Leaders who gave the lowest ratings on ethical culture which also decreased over time reported the highest level of ethical dilemmas, stress, and burnout. They also showed a continuous increase in these negative outcomes over time. Thus, ethical culture has significant cumulative effects on well-being, and these longitudinal effects can be both negative and positive, depending on the experienced strength of the culture’s ethicality

    Communities in high definition : Spatial and environmental factors shape the micro-distribution of aquatic invertebrates

    Get PDF
    According to metacommunity theories, the structure of natural communities is the result of both environmental filtering and spatial processes, with their relative importance depending on factors including local habitat characteristics, functional features of organisms, and the spatial scale considered. However, few studies have explored environmental and spatial processes in riverine systems at local scales, explicitly incorporating spatial coordinates into multi-taxa distribution models. To address this gap, we conducted a small-scale study to discriminate between abiotic and biotic factors affecting the distribution of aquatic macroinvertebrates, applying metacommunity concepts. We studied a mountain section in each of three perennial streams within the Po River Basin (northern Italy). We sampled macroinvertebrates both in summer and winter, using specific in situ 50-point random sampling grids. Environmental factors, including benthic organic matter (BOM), flow velocity, water depth, and substrate were recorded together with spatial coordinates for each sampling point. The relationships between community metrics (taxon richness, abundance, biomass, biomass-abundance ratio, and functional feeding groups) and explanatory variables (environmental and spatial) were assessed using generalised additive models. The influence of the explanatory variables on community structure was analysed with joint species distribution models. Environmental variables-primarily BOM-were the main drivers affecting community metrics, whereas the effects of spatial variables varied among metrics, streams, and seasons. During summer, community structure was strongly affected by BOM and spatial position within the riverbed, the latter probably being a proxy for mass effects mediated by biotic and stochastic processes. In contrast, community structure was mainly shaped by hydraulic variables in winter. Using macroinvertebrate communities as a model group, our results demonstrate that metacommunity concepts can explain small-scale variability in community structure. We found that both environmental filtering and biotic processes shape local communities, with the strength of these drivers depending on the season. These insights provide baseline knowledge that informs our understanding of ecological responses to environmental variability in contexts including restoration ecology, habitat suitability modelling, and biomonitoring.Peer reviewe

    Evidence of niche partitioning under ontogenetic influences among three morphologically similar siluriformes in small subtropical streams

    Get PDF
    Ontogenetic influences in patterns of niche breadth and feeding overlap were investigated in three species of Siluriformes (Heptapterus sp., Rhamdia quelen and Trichomycterus poikilos) aiming at understanding the species coexistence. Samplings were conducted bimonthly by electrofishing technique from June/2012 to June/2013 in ten streams of the northwestern state of Rio Grande do Sul, Brazil. The stomach contents of 1,948 individuals were analyzed by volumetric method, with 59 food items identified. In general Heptapterus sp. consumed a high proportion of Aegla sp., terrestrial plant remains and Megaloptera; R. quelen consumed fish, and Oligochaeta, followed by Aegla sp.; while the diet of T. poikilos was based on Simuliidae, Ephemeroptera and Trichoptera. Specie segregation was observed in the NMDS. Through PERMANOVA analysis feeding differences among species, and between a combination of species plus size classes were observed. IndVal showed which items were indicators of these differences. Niche breadth values were high for all species. The niche breadth values were low only for the larger size of R. quelen and Heptapterus sp. while T. poikilos values were more similar. Overall the species were a low feeding overlap values. The higher frequency of high feeding overlap was observed for interaction between Heptapterus sp. and T. poikilos. The null model confirmed the niche partitioning between the species. The higher frequency of high and intermediate feeding overlap values were reported to smaller size classes. The null model showed resource sharing between the species/size class. Therefore, overall species showed a resource partitioning because of the use of occasional items. However, these species share resources mainly in the early ontogenetic stages until the emphasized change of morphological characteristics leading to trophic niche expansion and the apparent segregation observed

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.peerReviewe

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Does the buffer width matter:testing the effectiveness of forest certificates in the protection of headwater stream ecosystems

    No full text
    Abstract Forest harvest has multiple impacts on adjoining freshwater ecosystems, particularly headwater streams which typically receive minimal protection against forestry. However, evidence on the effectiveness of differently sized riparian buffers remains limited. Using data from two discrete regions of Finland, we assessed the effectiveness of riparian buffers in providing protection for the riparian and stream environment, benthic invertebrate diversity and species composition, and ecosystem functioning of boreal headwater streams. Our study included streams with both wide (>15 m) and narrow (<15 m) riparian buffers, enabling comparison of the two dominant forest certificates (FSC and PEFC). Compared to unharvested reference streams, nutrient concentrations as well as stream and riparian light intensity and temperature were higher at forestry-impacted sites. The amount of woody debris, cover of aquatic mosses and particulate organic matter standing stock were strongly reduced in streams draining harvested forests, especially in narrowly buffered streams. Changes in light and nutrient conditions induced a transition towards more autotrophic conditions. Organic matter decomposition rates were elevated in forestry-impacted sites only in the southern region. Forest harvest decreased macroinvertebrate diversity and evenness, and altered community composition in the northern region, but much weaker changes were observed in the southern region. Our findings support the retention of riparian buffers, but also confirm that their effectiveness depends on the environmental context and thus remains poorly predictable. Our results also suggest that the widely applied PEFC certification does not provide sufficient protection for stream ecosystems and more stringent protocols are needed to ensure ecological sustainability of forestry
    • 

    corecore