144 research outputs found

    The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves

    Get PDF
    In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action-observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task. © 2014 Balser, Lorey, Pilgramm, Naumann, Kindermann, Stark, Zentgraf, Williams and Munzert

    Biosensing platform combining label-free and labelled analysis using Bloch surface waves

    Get PDF
    Bloch surface waves (BSW) propagating at the boundary of truncated photonic crystals (1D-PC) have emerged as an attractive approach for label-free sensing in plasmon-like sensor configurations. Due to the very low losses in such dielectric thin film stacks, BSW feature very low angular resonance widths compared to the surface plasmon resonance (SPR) case. Besides label-free operation, the large field enhancement and the absence of quenching allow utilizing BSW coupled fluorescence detection to additionally sense the presence of fluorescent labels. This approach can be adapted to the case of angularly resolved resonance detection, thus giving rise to a combined label-free / labelled biosensor platform. It features a parallel analysis of multiple spots arranged as a one-dimensional array inside a microfluidic channel of a disposable chip. Application of such a combined biosensing approach to the detection of the Angiopoietin-2 cancer biomarker in buffer solutions is reported

    Label-free and fluorescence biosensing platform using one dimensional photonic crystal chips

    No full text
    The increasing demand for early detection of diseases drives the efforts to develop more and more sensitive techniques to detect biomarkers in extremely low concentrations. Electromagnetic modes at the surface of one dimensional photonic crystals, usually called Bloch surface waves, were demonstrated to enhance the resolution and constitute an attractive alternative to surface plasmon polariton optical biosensors. We report on the development of Bloch surface wave biochips operating in both label-free and fluorescence modes and demonstrate their use in ovalbumin recognition assays

    Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas

    Get PDF
    How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action-specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI-scanning, 20 right-handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right-hand actions: an aiming movement, an extension-flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor- and motor-associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. Hum Brain Mapp, 2015. © 2015 The Authors. Human Brain Mapping Published byWiley Periodicals, Inc

    Imagination and Film

    Get PDF
    This chapter addresses the application of contemporary theories of the imagination—largely drawn from cognitive psychology—to our understanding of film. Topics include the role of the imagination in our learning what facts hold within a fictional film, including what characters’ motivations, beliefs, and feelings are; how our perceptual experience of a film explains our imaginative visualizing of its contents; how fictional scenarios in films generate certain affective and evaluative responses; and how such responses compare to those we have toward analogous circumstances in real life

    Body Context and Posture Affect Mental Imagery of Hands

    Get PDF
    Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not (hands-only), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum- or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual- rather than kinesthetic-based mechanisms during mental transformation of hands-on-body and hands-only, respectively

    Improving Oral Hygiene Skills by Computer-Based Training: A Randomized Controlled Comparison of the Modified Bass and the Fones Techniques

    Get PDF
    Background: Gingivitis and other plaque-associated diseases have a high prevalence in western communities even though the majority of adults report daily oral hygiene. This indicates a lack of oral hygiene skills. Currently, there is no clear evidence as to which brushing technique would bring about the best oral hygiene skills. While the modified Bass technique is often recommended by dentists and in textbooks, the Fones technique is often recommended in patient brochures. Still, standardized comparisons of the effectiveness of teaching these techniques are lacking. Methodology/Principal Findings: In a final sample of n=56 students, this multidisciplinary, randomized, examiner-blinded, controlled study compared the effects of parallel and standardized interactive computer presentations teaching either the Fones or the modified Bass technique. A control group was taught the basics of tooth brushing alone. Oral hygiene skills (remaining plaque after thorough oral hygiene) and gingivitis were assessed at baseline and 6, 12, and 28 weeks after the intervention. We found a significant group×time interaction for gingivitis (F(4/102)=3.267; p=0.016; e=0.957; ?2=0.114) and a significant main effect of group for oral hygiene skills (F(2/51)=7.088; p=0.002; ?2=0.218). Fones was superior to Bass; Bass did not differ from the control group. Group differences were most prominent after 6 and 12 weeks. Conclusions/Significance: The present trial indicates an advantage of teaching the Fones as compared to the modified Bass technique with respect to oral hygiene skills and gingivitis. Future studies are needed to analyze whether the disadvantage of teaching the Bass technique observed here is restricted to the teaching method employed. Trial Registration: German Clinical Trials Register http://www.drks.de/DRKS0000348
    corecore