5 research outputs found

    Loss of hif-1 promotes resistance to the exogenous mitochondrial stressor ethidium bromide in Caenorhabditis elegans

    No full text
    Abstract Background Mitochondrial dysfunction is one of the leading causes of neurological disorders in humans. Mitochondrial perturbations lead to adaptive mechanisms that include HIF-1 stabilization, though the consequences of increased levels of HIF-1 following mitochondrial stress remain poorly understood. Results Using Caenorhabditis elegans, we show that a hif-1 loss-of-function mutation confers resistance towards the mitochondrial toxin ethidium bromide (EtBr) and suppresses EtBr-induced production of ROS. In mammals, the PD-related gene DJ-1 is known to act as a redox sensor to confer protection against antioxidants and mitochondrial inhibitors. A deletion mutant of the C. elegans homolog djr-1.1 also showed increased resistance to EtBr. Furthermore, our data implicates p38 MAP kinase as an indispensable factor for survival against mitochondrial stress in both hif-1 and djr-1.1 mutants. Conclusions We propose that EtBr-induced HIF-1 activates pathways that are antagonistic in conferring protection against EtBr toxicity and that blocking HIF-1 activity may promote survival in cells with compromised mitochondrial function

    Model nematodes as a practical innovation to promote high throughput screening of natural products for anthelmintics discovery in South Asia: Current challenges, proposed practical and conceptual solutions

    No full text
    With the increasing prevalence of anthelmintic resistance in animals recorded globally, and the threat of resistance in human helminths, the need for novel anthelmintic drugs is greater than ever. Most research aimed at discovering novel anthelmintic leads relies on high throughput screening (HTS) of large libraries of synthetic small molecules in industrial and academic settings in developed countries, even though it is the tropical countries that are most plagued by helminth infections. Tropical countries, however, have the advantage of possessing a rich flora that may yield natural products (NP) with promising anthelmintic activity. Focusing on South Asia, which produces one of the world’s highest research outputs in NP and NP-based anthelmintic discovery, we find that limited basic research and funding, a lack of awareness of the utility of model organisms, poor industry-academia partnerships and lack of technological innovations greatly limit anthelmintics research in the region. Here we propose that utilizing model organisms including the free-living nematode Caenorhabditis elegans, that can potentially allow rapid target identification of novel anthelmintics, and Oscheius tipulae, a closely related, free-living nematode which is found abundantly in soil in hotter temperatures, could be a much-needed innovation that can enable cost-effective and efficient HTS of NPs for discovering compounds with anthelmintic/antiparasitic potential in South Asia and other tropical regions that historically have devoted limited funding for such research. Additionally, increased collaborations at the national, regional and international level between parasitologists and pharmacologists/ethnobotanists, setting up government-industry-academia partnerships to fund academic research, creating a centralized, regional collection of plant extracts or purified NPs as a dereplication strategy and HTS library, and holding regional C. elegans/O. tipulae-based anthelmintics workshops and conferences to share knowledge and resources regarding model organisms may collectively promote and foster a NP-based anthelmintics landscape in South Asia and beyond

    PGP-14 establishes a polar lipid permeability barrier within the C. elegans pharyngeal cuticle.

    No full text
    The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult
    corecore