6,424 research outputs found
Workshop in Moodle: a tool for peer critiquing
This paper will begin with a brief discussion of the benefits of peer assessment and peer critiquing. In particular, it will examine how both can be beneficial in
helping to introduce, and reinforce, valuable graduate attributes in students throughout their university careers.
It will then examine the tools available at the University of Glasgow and evaluate them in terms of their strengths and weaknesses. In order to explain this in detail, a real life case study from a third year class in Nursing will be presented. The paper will conclude that, while there are obvious benefits to peer critiquing tools being used with a Virtual Learning Environment (VLE), some modifications
are necessary in order to make them more easily usable by staff and students
Quantum computation with optical coherent states
We show that quantum computation circuits using coherent states as the
logical qubits can be constructed from simple linear networks, conditional
photon measurements and "small" coherent superposition resource states
The efficiencies of generating cluster states with weak non-linearities
We propose a scalable approach to building cluster states of matter qubits
using coherent states of light. Recent work on the subject relies on the use of
single photonic qubits in the measurement process. These schemes can be made
robust to detector loss, spontaneous emission and cavity mismatching but as a
consequence the overhead costs grow rapidly, in particular when considering
single photon loss. In contrast, our approach uses continuous variables and
highly efficient homodyne measurements. We present a two-qubit scheme, with a
simple bucket measurement system yielding an entangling operation with success
probability 1/2. Then we extend this to a three-qubit interaction, increasing
this probability to 3/4. We discuss the important issues of the overhead cost
and the time scaling. This leads to a "no-measurement" approach to building
cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing
easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy
TIRF and STORM microscopy are super-resolving fluorescence imaging modalities for which current implementations on standard microscopes can present significant complexity and cost. We present a straightforward and low-cost approach to implement STORM and TIRF taking advantage of multimode optical fibres and multimode diode lasers to provide the required excitation light. Combined with open source software and relatively simple protocols to prepare samples for STORM, including the use of Vectashield for non-TIRF imaging, this approach enables TIRF and STORM imaging of cells labelled with appropriate dyes or expressing suitable fluorescent proteins to become widely accessible at low cost
The quantum-classical crossover of a field mode
We explore the quantum-classical crossover in the behaviour of a quantum
field mode. The quantum behaviour of a two-state system - a qubit - coupled to
the field is used as a probe. Collapse and revival of the qubit inversion form
the signature for quantum behaviour of the field and continuous Rabi
oscillations form the signature for classical behaviour of the field. We
demonstrate both limits in a single model for the full coupled system, for
states with the same average field strength, and so for qubits with the same
Rabi frequency.Comment: 6 pages, 3 figures (in this version the figures, text and references
have all been expanded
Non-Markovian dynamics of a qubit
In this paper we investigate the non-Markovian dynamics of a qubit by
comparing two generalized master equations with memory. In the case of a
thermal bath, we derive the solution of the post-Markovian master equation
recently proposed in Ref. [A. Shabani and D.A. Lidar, Phys. Rev. A {\bf 71},
020101(R) (2005)] and we study the dynamics for an exponentially decaying
memory kernel. We compare the solution of the post-Markovian master equation
with the solution of the typical memory kernel master equation. Our results
lead to a new physical interpretation of the reservoir correlation function and
bring to light the limits of usability of master equations with memory for the
system under consideration.Comment: Replaced with published version (minor changes
Schrodinger cats and their power for quantum information processing
We outline a toolbox comprised of passive optical elements, single photon
detection and superpositions of coherent states (Schrodinger cat states). Such
a toolbox is a powerful collection of primitives for quantum information
processing tasks. We illustrate its use by outlining a proposal for universal
quantum computation. We utilize this toolbox for quantum metrology
applications, for instance weak force measurements and precise phase
estimation. We show in both these cases that a sensitivity at the Heisenberg
limit is achievable.Comment: 10 pages, 5 figures; Submitted to a Special Issue of J. Opt. B on
"Fluctuations and Noise in Photonics and Quantum Optics" (Herman Haus
Memorial Issue
Finding the Median (Obliviously) with Bounded Space
We prove that any oblivious algorithm using space to find the median of a
list of integers from requires time . This bound also applies to the problem of determining whether the median
is odd or even. It is nearly optimal since Chan, following Munro and Raman, has
shown that there is a (randomized) selection algorithm using only
registers, each of which can store an input value or -bit counter,
that makes only passes over the input. The bound also implies
a size lower bound for read-once branching programs computing the low order bit
of the median and implies the analog of for length oblivious branching programs
Single photon quantum non-demolition in the presence of inhomogeneous broadening
Electromagnetically induced transparency (EIT) has been often proposed for
generating nonlinear optical effects at the single photon level; in particular,
as a means to effect a quantum non-demolition measurement of a single photon
field. Previous treatments have usually considered homogeneously broadened
samples, but realisations in any medium will have to contend with inhomogeneous
broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys.
Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an
alternative mode of operation that is preferred in an inhomogeneous
environment. We further show the implications of these results on a potential
implementation in diamond containing nitrogen-vacancy colour centres. Our
modelling shows that single mode waveguide structures of length in single-crystal diamond containing a dilute ensemble of NV
of only 200 centres are sufficient for quantum non-demolition measurements
using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv
purpose
Practical Quantum Bit Commitment Protocol
A quantum protocol for bit commitment the security of which is based on
technological limitations on nondemolition measurements and long-term quantum
memory is presented.Comment: Quantum Inf. Process. (2011
- …