4 research outputs found

    Expression conservation within the circadian clock of a monocot: natural variation at barley <it>Ppd-H1</it> affects circadian expression of flowering time genes, but not clock orthologs

    No full text
    Abstract Background The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Results Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. Conclusion We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.</p

    Variability of Chemical Compositions and Antimicrobial and Antioxidant Activities of Ruta chalepensis Leaf Essential Oils from Three Palestinian Regions

    No full text
    Introduction. Interest in essential oils was recently revived with their popularity increasing in medicine, pharmacy, and aromatherapy. This study was performed to identify the chemical compositions of the essential oil of Ruta chalepensis growing wildly in three regions in Palestine and to assess and compare their antimicrobial and antioxidant activities. Methods. Identification of the essential oil was performed by gas chromatography coupled with mass spectrometry (GC-MS). Antimicrobial activity was tested against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Methicillin-Resistant Staphylococcus aureus, and Candida albicans by using minimum inhibitory concentration (MIC) assay, while antioxidant activity was analyzed by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. Results. The essential oils of R. chalepensis from Jerusalem and Hebron regions have almost identical components; the major compounds identified were linalyl acetate and β-linalool; these essential oils exerted potential antioxidant and antibacterial activities. On the other hand, the major components of the plant essential oil from Jenin region were 2-undecanone and 2-nonanone, which exhibited potential antifungal activity. Conclusions. The phytoconstituents and antioxidant and antimicrobial properties of the essential oil of R. chalepensis from different regions in Palestine were established in this study. The obtained results indicate possible applications for R. chalepensis in the treatment of various infectious and noninfectious diseases

    Characterizing Palestinian snake melon (Cucumis melo var. flexuosus) germplasm diversity and structure using SNP and DArTseq markers

    No full text
    Abstract Background Crop landraces embody a source of beneficial genes potentially providing endurance to environmental stress and other agronomic qualities including yield. Our study included 88 snake melon accessions (Cucumis melo var. flexuosus) collected from 9 districts in the Palestinian West-Bank. These accessions represent four landraces of Palestinian snake melon: Green, and White Baladi, and Green, and White Sahouri. Results This is the first report on successful application of genotyping by sequencing in snake melon. Nine thousand seven hundred fifty single-nucleotide polymorphism (SNP) and 7400 DArTseq genetic markers were employed to evaluate genetic biodiversity and population structure of Palestinian snake melon germplasm collection. Clustering based on neighbor-joining-analysis, principle coordinate and Bayesian model implemented in Structure showed that patterns of genetic diversity of snake melon landraces depends on their geographical source and unraveled the presence of two major local landraces (Sahouri, and Baladi) with accessions from each group clustering together. A significant correlation was observed between both types of markers in Mantel correlation test. A significant association between genetic and geographic matrices (P < 0.0001) was also detected. AMOVA indicated that majority of variation (90%) was due to the difference within accessions. Conclusion The Palestinian landraces seem to have unique genes that may allow the enhancement of the global snake melon gene pool and developments of the plant production worldwide. Our subsequent objective is to detect genotypes with promising qualities and to conduct association mapping studies concentrating on Fusarium-wilt resistance, yield, and environmental stresses

    Unlocking the Genetic Diversity within A Middle-East Panel of Durum Wheat Landraces for Adaptation to Semi-arid Climate

    No full text
    Drought is the major environmental factor limiting wheat production worldwide. Developing novel cultivars with greater drought tolerance is the most viable solution to ensure sustainable agricultural production and alleviating threats to food-security. Here we established a core-collection of landraces and modern durum wheat cultivars (WheatME, n = 36), from the Middle East region (Jordan, Palestine and Israel) aiming at unlocking the genetic and morpho-physiological adaptation to semi-arid environment conditions. Interestingly, genetic analysis of the WheatME core-collection could not distinguish the landraces according to their country of origin. Field-based evaluation of the core-collection conducted across range of contrasting environmental conditions: Til-Palestine, Bet-Dagan-Israel and Irbid-Jordan with annual precipitation of 500 mm, 360 mm and 315 mm, respectively. The Til environment showed highest grain yield while the Irbid environment showed the lowest values. Analysis of variance showed a significant Genotype &times; Environment interaction for plant phenology traits (plant height and heading date) and productivity traits (1000-kernel weight, and grain yield). Principal component analysis showed three main cultivar groups: High yielding lines (modern durum cultivars, and landraces), tall late flowering landraces, and landraces with high grain weight. This knowledge could serve as basis for future breeding efforts to develop new elite cultivars adapted to the Mediterranean Basin&rsquo;s semi-arid conditions
    corecore