738 research outputs found

    A Megacam Survey of Outer Halo Satellites. IV. Two foreground populations possibly associated with the Monoceros substructure in the direction of NGC2419 and Koposov2

    Get PDF
    The origin of the Galactic halo stellar structure known as the Monoceros ring is still under debate. In this work, we study that halo substructure using deep CFHT wide-field photometry obtained for the globular clusters NGC2419 and Koposov2, where the presence of Monoceros becomes significant because of their coincident projected position. Using Sloan Digital Sky Survey photometry and spectroscopy in the area surrounding these globulars and beyond, where the same Monoceros population is detected, we conclude that a second feature, not likely to be associated with Milky Way disk stars along the line-of-sight, is present as foreground population. Our analysis suggests that the Monoceros ring might be composed of an old stellar population of age t ~ 9Gyr and a new component ~ 4Gyr younger at the same heliocentric distance. Alternatively, this detection might be associated with a second wrap of Monoceros in that direction of the sky and also indicate a metallicity spread in the ring. The detection of such a low-density feature in other sections of this halo substructure will shed light on its nature.Comment: 10 pages, 10 figures, accepted for publication in Ap

    Accurate masses for dispersion-supported galaxies

    Full text link
    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analyzing resolved line-of-sight velocity data for globular clusters, dwarf galaxies, and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the dynamical mass enclosed within the 3D deprojected half-light radius r_1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy. We find M_1/2 = 3 \sigma_los^2 r_1/2 / G ~ 4 \sigma_los^2 R_eff / G, where \sigma_los^2 is the luminosity-weighted square of the line-of-sight velocity dispersion and R_eff is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of mass approximately 3 x 10^9 M_sun in Lambda CDM cosmology. The faintest MW dSphs seem to have formed in dark matter halos that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their I-band mass-to-light ratios (M/L). The M/L vs. M_1/2 relation for dispersion-supported galaxies follows a U-shape, with a broad minimum near M/L ~ 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to M/L ~ 3,200 for ultra-faint dSphs, and a more shallow rise to M/L ~ 800 for galaxy cluster spheroids.Comment: 20 pages, 13 figures. Accepted to MNRAS on March 27th, 201

    A proof‐of‐concept pilot randomized comparative trial of brief Internet‐based compassionate mind training and cognitive‐behavioral therapy for perinatal and intending to become pregnant women

    Get PDF
    Depression is a prevalent and costly mental health problem that affects women as well as their larger communities, with substantial impacts on mother and infant during childbearing years. Face‐to‐face care has not adequately addressed this global concern due to difficulties in scaling these resources. Internet interventions, which can provide psychological tools to those lacking adequate access, show promise in filling this void. We conducted a 2‐condition proof‐of‐concept pilot randomized trial comparing brief Internet‐based cognitive behavioural therapy (CBT) and brief Internet‐based compassionate mind training (CMT) for women who are currently pregnant, became pregnant within the last year, and intend to become pregnant in the future. We found that, although CMT and CBT demonstrated near equivalence in improving affect, self‐reassurance, self‐criticism, and self‐compassion, CMT showed superiority to CBT in reducing depression and anxiety symptoms. These findings provide a compelling initial argument for the use of CMT as an avenue for addressing problems associated with negative affect. Implications, limitations, and future directions along this line of research will also be discussed.Campus Research Board at Palo Alto University Elton C and Joan R Waelde Meditation Fellowshi

    The Primeval Populations of the Ultra-Faint Dwarf Galaxies

    Get PDF
    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ~1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.Comment: Accepted for publication in The Astrophysical Journal Letters. Latex, 5 pages, 2 color figures, 1 tabl

    Breaking the Disk/Halo Degeneracy with Gravitational Lensing

    Get PDF
    The degeneracy between the disk and the dark matter contribution to galaxy rotation curves remains an important uncertainty in our understanding of disk galaxies. Here we discuss a new method for breaking this degeneracy using gravitational lensing by spiral galaxies, and apply this method to the spiral lens B1600+434 as an example. The combined image and lens photometry constraints allow models for B1600+434 with either a nearly singular dark matter halo, or a halo with a sizable core. A maximum disk model is ruled out with high confidence. Further information, such as the circular velocity of this galaxy, will help break the degeneracies. Future studies of spiral galaxy lenses will be able to determine the relative contribution of disk, bulge, and halo to the mass in the inner parts of galaxies.Comment: Replaced with minor revisions, a typo fixed, and reference added; 21 pages, 8 figures, ApJ accepte
    • 

    corecore