17,768 research outputs found

    A Proposal of a Renormalization Group Transformation for Lattice Field Theories

    Get PDF
    We propose a new Real Space Renormalization Group transformation useful for Monte Carlo calculations in theories with global or local symmetries. From relaxation arguments we define the block-spin transformation with two tunable free parameters, adapted to the system's action. Varying them it is possible to place the fixed point very close to the simulation point. We show how the method works in a simple model with global symmetry: the three dimensional XY model.Comment: 26 pages, uuencoded compressed postscript single file, 8 figures include

    SUSY Soft Breaking Terms from String Scenarios

    Full text link
    The general SUSY soft breaking terms for a large class of phenomenologically relevant string scenarios (symmetric orbifolds) are given. They show a certain lack of universality, but not dangerous for flavor changing neutral currents. To get more quantitative results a specific SUSY breaking mechanism has to be considered, namely gaugino condensation in the hidden sector. Then, it turns out that squark and slepton masses tend to be much larger than scalar masses (mϕ>10Mam_{\phi} > 10 M_a), which probably is a quite general fact. Experimental bounds and the requirement of a successful electroweak breaking without fine tuning impose further restrictions on the soft breaking terms. As a consequence the gluino and chargino masses should be quite close to their present experimental limits, whereas squark and slepton masses should be much higher (> 1 TeV).Comment: (Talk presented at the SUSY-93 Conference, Boston, March 29 - April 2, 1993), 11 pages, CERN--TH.6922/9
    • …
    corecore