200 research outputs found

    Validating Whole Genome Nanopore Sequencing, using Usutu Virus as an Example

    Get PDF
    Whole genome sequencing can be used to characterize and to trace viral outbreaks. Nanopore-based whole genome sequencing protocols have been described for several different viruses. These approaches utilize an overlapping amplicon-based approach which can be used to target a specific virus or group of genetically related viruses. In addition to confirmation of the virus presence, sequencing can be used for genomic epidemiology studies, to track viruses and unravel origins, reservoirs and modes of transmission. For such applications, it is crucial to understand possible effects of the error rate associated with the platform used. Routine application in clinical and public health settings require that this is documented with every important change in the protocol. Previously, a protocol for whole genome Usutu virus sequencing on the nanopore sequencing platform was validated (R9.4 flowcell) by direct comparison to Illumina sequencing. Here, we describe the method used to determine the required read coverage, using the comparison between the R1

    High-titer convalescent plasma plus nirmatrelvir/ritonavir treatment for non-resolving COVID-19 in six immunocompromised patients

    Get PDF
    Objectives: Immunocompromised patients have an increased risk of severe or prolonged COVID-19. Currently available drugs are registered to treat COVID-19 during the first 5 to 7 days after symptom onset. Data on the effectivity in immunocompromised patients with chronic non-resolving COVID-19 are urgently needed. Here, we report the outcome of patients treated with nirmatrelvir/ritonavir together with high-titer convalescent plasma (CP) in six immunocompromised patients with non-resolving COVID-19. Methods: Immunocompromised patients with persisting COVID-19 (positive PCR with Ct values &lt;30 for ≥20 days) received off-label therapy with nirmatrelvir/ritonavir. It was combined with CP containing BA.5 neutralizing titers of ≥1/640 whenever available. Follow-up was done by PCR and sequencing on nasopharyngeal swabs on a weekly basis until viral genome was undetectable consecutively. Results: Five immunocompromised patients were treated with high-titer CP and 5 days of nirmatrelvir/ritonavir. One patient received nirmatrelvir/ritonavir monotherapy. Median duration of SARS-CoV-2 PCR positivity was 70 (range 20-231) days before nirmatrelvir/ritonavir treatment. In four patients receiving combination therapy, no viral genome of SARS-CoV-2 was detected on day 7 and 14 after treatment while the patient receiving nirmatrelvir/ritonavir monotherapy, the day 7 Ct value increased to 34 and viral genome was undetectable thereafter. Treatment was unsuccessful in one patient. In this patient, sequencing after nirmatrelvir/ritonavir treatment did not show protease gene mutations. Conclusions: In immunocompromised patients with non-resolving COVID-19, the combination of nirmatrelvir/ritonavir and CP may be an effective treatment. Larger prospective studies are needed to confirm these preliminary results and should compare different treatment durations.</p

    Characterization of Posa and Posa-like virus genomes in fecal samples from humans, pigs, rats, and bats collected from a single location in Vietnam.

    Get PDF
    Porcine stool-associated RNA virus (posavirus), and Human stool-associated RNA virus (husavirus) are viruses in the order Picornavirales recently described in porcine and human fecal samples. The tentative group (Posa and Posa-like viruses: PPLVs) also includes fish stool-associated RNA virus (fisavirus) as well as members detected in insects (Drosophila subobscura and Anopheles sinensis) and parasites (Ascaris suum). As part of an agnostic deep sequencing survey of animal and human viruses in Vietnam, we detected three husaviruses in human fecal samples, two of which share 97-98% amino acid identity to Dutch husavirus strains and one highly divergent husavirus with only 25% amino acid identity to known husaviruses. In addition, the current study found forty-seven complete posavirus genomes from pigs, ten novel rat stool-associated RNA virus genomes (tentatively named rasavirus), and sixteen novel bat stool-associated RNA virus genomes (tentatively named basavirus). The five expected Picornavirales protein domains (helicase, 3C-protease, RNA-dependent RNA polymerase, and two Picornavirus capsid domain) were found to be encoded by all PPLV genomes. In addition, a nucleotide composition analysis revealed that the PPLVs shared compositional properties with arthropod viruses and predicted non-mammalian hosts for all PPLV lineages. The study adds seventy-six genomes to the twenty-nine PPLV genomes currently available and greatly extends our sequence knowledge of this group of viruses within the Picornavirales order

    Complete genome sequences of six measles virus strains

    Get PDF
    Genetic characterization of wild-type measles virus (MV) strains is a critical component of measles surveillance and molecular epidemiology. We have obtained complete genome sequences of six MV strains belonging to different genotypes, using random-primed next generation sequencing

    Towards the development of a SARS-CoV-2 variant risk assessment tool:expert consultation on the assessment of scientific evidence on emerging variants

    Get PDF
    A systematic approach is required for the development of an evidence-based risk assessment tool to robustly estimate the risks and implications of SARS-CoV-2 variants. We conducted a survey among experts involved in technical advisory roles for WHO to capture their assessment of the robustness of different study types that provide evidence for potential changes in transmissibility, antigenicity, virulence, treatability, and detectability of SARS-CoV-2 variants. The views of 62 experts indicated that studies could be grouped on the basis of robustness and reliability for the different risk indicators mentioned. Several study types that experts scored as providing reliable evidence and that can be performed in a timely manner were identified. Although experts from different technical areas had varying responses, there was agreement on the highest and lowest scoring study types. These findings can help to prioritise, harmonise, and optimise study designs for the further development of a systematic, evidence-based, SARS-CoV-2 variant risk assessment tool.</p

    Complete Genome Sequences of Six Measles Virus Strains.

    Get PDF
    Genetic characterization of wild-type measles virus (MV) strains is a critical component of measles surveillance and molecular epidemiology. We have obtained complete genome sequences of six MV strains belonging to different genotypes, using random-primed next generation sequencing

    Cryptic SARS-CoV-2 lineage identified on two mink farms as a possible result of long-term undetected circulation in an unknown animal reservoir, Poland, November 2022 to January 2023

    Get PDF
    In late 2022 and early 2023, SARS-CoV-2 infections were detected on three mink farms in Poland situated within a few km from each other. Whole-genome sequencing of the viruses on two of the farms showed that they were related to a virus identified in humans in the same region 2 years before (B.1.1.307 lineage). Many mutations were found, including in the S protein typical of adaptations to the mink host. The origin of the virus remains to be determined.</p

    SARS-CoV-2 in lions, gorillas and zookeepers in the Rotterdam Zoo, the Netherlands, a One Health investigation, November 2021

    Get PDF
    In November 2021, seven western lowland gorillas and four Asiatic lions were diagnosed with COVID-19 at Rotterdam Zoo. An outbreak investigation was undertaken to determine the source and extent of the outbreak and to identify possible transmission routes. Interviews were conducted with staff to identify human and animal contacts and cases, compliance with personal protective equipment (PPE) and potential transmission routes. Human and animal contacts and other animal species suspected to be susceptible to SARS-CoV-2 were tested for SARS-CoV-2 RNA. Positive samples were subjected to sequencing. All the gorillas and lions that could be tested (3/7 and 2/4, respectively) were RT-PCR positive between 12 November and 10 December 2021. No other animal species were SARS-CoV-2 RNA positive. Forty direct and indirect human contacts were identified. Two direct contacts tested RT-PCR positive 10 days after the first COVID-19 symptoms in animals. The zookeepers' viral genome sequences clustered with those of gorillas and lions. Personal protective equipment compliance was suboptimal at instances. Findings confirm transmission of SARS-CoV-2 among animals and between humans and animals but source and directionality could not be established. Zookeepers were the most likely source and should have periodic PPE training. Sick animals should promptly be tested and isolated/quarantined.</p

    Population-based screening in a municipality after a primary school outbreak of the SARSCoV-2 Alpha variant, the Netherlands, December 2020–February 2021

    Get PDF
    An outbreak of SARS-CoV-2 Alpha variant (Pango lineage B.1.1.7) was detected at a primary school (School X) in Lansingerland, the Netherlands, in December 2020. The outbreak was studied retrospectively, and population-based screening was used to assess the extent of virus circulation and decelerate transmission. Cases were SARS-CoV-2 laboratory confirmed and were residents of Lansingerland (November 16(th) 2020 until February 22(th) 2021), or had an epidemiological link with School X or neighbouring schools. The SARS-CoV-2 variant was determined using variant PCR or whole genome sequencing. A questionnaire primarily assessed clinical symptoms. A total of 77 Alpha variant cases were found with an epidemiological link to School X, 16 Alpha variant cases linked to the neighbouring schools, and 146 Alpha variant cases among residents of Lansingerland without a link to the schools. The mean number of self-reported symptoms was not significantly different among Alpha variant infected individuals compared to non-Alpha infected individuals. The secondary attack rate (SAR) among Alpha variant exposed individuals in households was 52% higher compared to non-Alpha variant exposed individuals (p = 0.010), with the mean household age, and mean number of children and adults per household as confounders. Sequence analysis of 60 Alpha variant sequences obtained from cases confirmed virus transmission between School X and neighbouring schools, and showed that multiple introductions of the Alpha variant had already taken place in Lansingerland at the time of the study. The alpha variant caused a large outbreak at both locations of School X, and subsequently spread to neighbouring schools, and households. Population-based screening (together with other public health measures) nearly stopped transmission of the outbreak strain, but did not prevent variant replacement in the Lansingerland municipality
    • …
    corecore