4 research outputs found

    Preparation and Characterization of Low-Cost Ceramic Membrane Coated with Chitosan: Application to the Ultrafine Filtration of Cr(VI)

    No full text
    In this work, low-cost ceramic membranes (CMs) were prepared from ultrafine starting powders such as kaolin, clay, and starch by a dry compaction method. The ceramic membranes were sintered at different temperatures and times and were characterized by XRD, XRF, TG-DTA, SEM-EDS, N2-BET, water absorption, compressive strength, and pure water flux. The optimal membrane, sintered at 1000 °C for 3 h, possessed water absorption of 27.27%, a compressive strength of 31.05 MPa, and pure water flux of 20.74 L/h m2. Furthermore, chitosan crosslinked with glutaraldehyde was coated on the surface of the ceramic membrane by the dip coating method, and the pore size of the chitosan-coated ceramic membrane (CCCM) was 16.24 nm. Eventually, the separation performance of this membrane was assessed for the removal of chromium(VI) from aqueous solution. The ultrafine filtration of Cr(VI) was studied in the pH range of 2–7. The maximum removal of Cr(VI) was observed to be 71.25% with a pH of 3. The prepared CCCM showed good membrane properties such as mechanical stability and ultrafine structure, which have important applications for the treatment of wastewater including such heavy metals

    Adsorption of REEs from Aqueous Solution by EDTA-Chitosan Modified with Zeolite Imidazole Framework (ZIF-8)

    No full text
    Chitosan (CS) modified with ethylenediamine tetraacetic acid (EDTA) was further modified with the zeolite imidazole framework (ZIF-8) by in situ growth method and was employed as adsorbent for the removal of rare-earth elements (REEs). The material (EDTA–CS@ZIF-8) and ZIF-8 and CS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and nitrogen adsorption/desorption experiments (N2- Brunauer–Emmet–Teller (BET)). The effects of adsorbent dosage, temperature, the pH of the aqueous solution, contact time on the adsorption of REEs (La(III), Eu(III), and Yb(III)) by EDTA–CS@ZIF-8 were studied. Typical adsorption isotherms (Langmuir, Freundlich, and Dubinin–Radushkevich (D-R)) were determined for the adsorption process, and the maximal adsorption capacity was estimated as 256.4 mg g−1 for La(III), 270.3 mg g−1 for Eu(III), and 294.1 mg g−1 for Yb(III). The adsorption kinetics results were consistent with the pseudo-second-order equation, indicating that the adsorption process was mainly chemical adsorption. The influence of competing ions on REE adsorption was also investigated. After multiple cycles of adsorption/desorption behavior, EDTA–CS@ZIF-8 still maintained high adsorption capacity for REEs. As a result, EDTA–CS@ZIF-8 possessed good adsorption properties such as stability and reusability, which have potential application in wastewater treatment

    Adsorption of Chromium (III) and Chromium (VI) Ions from Aqueous Solution Using Chitosan–Clay Composite Materials

    No full text
    In this work, biopolymer chitosan and natural clay were used to obtain composite materials. The overall aim of this study was to improve the properties (porosity, thermal stability and density) of pure chitosan beads by the addition of clay and to obtain a chitosan-based composite material for the adsorption of heavy metals from an aqueous solution, using Mongolian resources, and to study the adsorption mechanism. The natural clay was pre-treated with acid and heat to remove the impurities. The chitosan and pre-treated clay were mixed in different ratios (8:1, 8:2 and 8:3) for chemical processing to obtain a composite bead for the adsorption of chromium ions. The adsorption of Cr(III) and Cr(VI) was studied as a function of the solution pH, time, temperature, initial concentration of the chromium solution and mass of the composite bead. It was found that the composite bead obtained from the mixture of chitosan and treated clay with a mass ratio of 8:1 and 8:2 had the highest adsorption capacity (23.5 and 17.31 mg·g−1) for Cr(III) and Cr(VI), respectively, in the optimum conditions. The properties of the composite materials, prepared by mixing chitosan and clay with a ratio of 8:1 and 8:2, were investigated using XRD, SEM–EDS, BET and TG analysis. The adsorption mechanism was discussed based on the XPS analysis results. It was confirmed that the chromium ions were adsorbed in their original form, such as Cr(III) and Cr(VI), without undergoing oxidation or reduction reactions. Furthermore, Cr(III) and Cr(VI) were associated with the hydroxyl and amino groups of the composite beads during adsorption. The kinetic, thermodynamic and isothermal analysis of the adsorption process revealed that the interaction between the chitosan/clay composite bead and Cr(III) and Cr(VI) ions can be considered as a second-order endothermic reaction, as such the adsorption can be assessed using the Langmuir isotherm model. It was concluded that the composite bead could be used as an adsorbent for the removal of chromium ions

    A Natural Zeolite Developed with 3-Aminopropyltriethoxysilane and Adsorption of Cu(II) from Aqueous Media

    No full text
    In this work, we removed copper (II) from an aqueous solution by using zeolite modified with a silicon-organic monomer (3-aminopropyltriethoxysilane; APTES) depending on the pH, time, temperature, and initial concentration of Cu(II) ions. To confirm the modification process and assess the interaction between the modified zeolite and Cu(II), we performed instrumental analyses (XRD, SEM/EDX, TGA/DTA, BET, FT-IR, and XPS). We determined the maximum adsorption capacities of the modified zeolite for Cu(II) to be 4.50, 6.244, 6.96, and 20.66 mg/g at T = 25 °C (pH = 5, t = 8 h) when the initial concentrations of Cu(II) were 50, 100, 200, and 400 mg/L, respectively. According to the adsorption thermodynamics and kinetics, the second-order reaction controls the adsorption process. Based on the two isotherm models (Langmuir and Freundlich) with constant values (KL = 0.144, n = 2.764) and the correlation coefficients (R2 = 0.8946, R2 = 0.9216), we concluded that the Cu(II) adsorption onto the modified zeolite could be followed by the Freundlich isotherm model rather than the Langmuir isotherm model. The modified zeolite could be an effective material for the removal of Cu(II) from aqueous solutions
    corecore