285 research outputs found

    Metformin: An Emerging New Therapeutic Option for Targeting Cancer Stem Cells and Metastasis

    Get PDF
    Metastasis is an intricate process by which a small number of cancer cells from the primary tumor site undergo numerous alterations, which enables them to form secondary tumors at another and often multiple sites in the host. Transition of a cancer cell from epithelial to mesenchymal phenotype is thought to be the first step in the progression of metastasis. Recently, the recognition of cancer stem cells has added to the perplexity in understanding metastasis, as studies suggest cancer stem cells to be the originators of metastasis. All current and investigative drugs have been unable to prevent or reverse metastasis, as a result of which most metastatic cancers are incurable. A potential drug that can be considered is metformin, an oral hypoglycemic drug. In this review we discuss the potential of metformin in targeting both epithelial to mesenchymal transition and cancer stem cells in combating cancer metastases

    Vaginal Recurrence More than 17 Years after Hysterectomy and Adjuvant Treatment for Uterine Carcinoma with Successful Salvage Brachytherapy: A Case Report

    Get PDF
    Purpose: Although the majority of recurrences occur within the first 3 years of hysterectomy for endometrioid carcinoma, we report herein a successful salvage vaginal brachytherapy in a patient with endometrioid uterine carcinoma which recurred more than 17 years after initial treatment. Materials and Methods: A 61-year-old female was diagnosed with endometrioid adenocarcinoma of the uterus and treated with TAH-BSO, followed by adjuvant external beam radiation therapy (EBRT) to the whole pelvis. After remaining free of any recurrent or metastatic disease for more than 17 years, she was diagnosed with isolated vaginal cuff recurrence and successfully treated with a salvage high-dose-rate intracavitary vaginal brachytherapy. Results: The patient remained disease free until her death from unrelated causes 7 years later. Conclusion: To the best of our knowledge, this case represents the longest time to recurrence of endometrial cancer in someone who had been treated with TAH-BSO and adjuvant pelvic EBRT. This case highlights that even with adjuvant therapy, late recurrences may occur, and successful salvage brachytherapy is very effective

    Clinical trials and progress with paclitaxel in ovarian cancer

    Get PDF
    Paclitaxel is a front-line agent for ovarian cancer chemotherapy, along with the platinum agents. Derived from the Pacific yew tree, Taxus brevifolia, paclitaxel has covered significant ground from the initial discovery of its antineoplastic properties to clinical applications in many forms of human cancers, including ovarian cancer. Although much has been published about the unique mechanism of action of this agent, several issues remain to be resolved. Finding the appropriate dosage schedule for paclitaxel in chemo-naïve and recurrent ovarian cancer, defining the role of paclitaxel in maintenance chemotherapy, and elucidating the mechanisms of taxane resistance are areas of intense research. Newer forms of taxanes are being manufactured to avoid troublesome adverse effects and to improve clinical efficacy. These issues are reviewed in detail in this paper with an emphasis on clinically relevant evidence-based information

    Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-kappaB

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Platinum-resistance (PR) continues to be a major problem in the management of epithelial ovarian cancer (EOC). Response to various chemotherapeutic agents is poor in patients deemed PR. Genistein, a soy isoflavone has been shown to enhance the effect of chemotherapy in prostate and pancreatic cancer cells <it>in vitro </it>and <it>in vivo </it>by reversing chemo-resistance phenotype. The goal of this study was to investigate the effects of combination therapy with genistein and cisplatin as well as other cytotoxic conventional chemotherapeutic agents in platinum-sensitive (PS) and resistant EOC cells.</p> <p>Methods</p> <p>The PS human ovarian cancer cell line A2780 and its PR clone C200 cells were pretreated with genistein, followed by the combination of genistein and either cisplatin, taxotere or gemcitabine. Cell survival and apoptosis was assessed by MTT and histone-DNA ELISA. Electrophoretic mobility shift assay (EMSA) was used to evaluate NF-κB DNA binding activity. Western blot analysis was performed with antibodies to Bcl-2, Bcl-xL, survivin, c-IAP and PARP.</p> <p>Results</p> <p>Reduction in cell viability, and corresponding induction of apoptosis was observed with genistein pretreatment followed by combination treatment with each of the drugs in both cell lines. The PS cell line was pretreated for 24 hours; in contrast, the PR cell line required 48 hours pretreatment to achieve a response. The anti-apoptotic genes c-IAP1, Bcl-2, Bcl-xL, survivin and NF-κB DNA binding activity were all found to be down-regulated in the combination groups.</p> <p>Conclusion</p> <p>This study convincingly demonstrated that the current strategy can be translated in a pre-clinical animal model, and thus it should stimulate future clinical trial for the treatment of drug-resistant ovarian cancer.</p

    A patient perspective on applying intermittent fasting in gynecologic cancer

    Get PDF
    OBJECTIVE: Researchers sought patient feedback on a proposed randomized controlled trial (RCT) in which gynecological cancer patients would modify their diets with intermittent fasting to gain insight into patients\u27 perspectives, receptivity, and potential obstacles. A convenience sample of 47 patients who met the inclusion criteria of the proposed RCT provided their feedback on the feasibility and protocols of the RCT using a multi-method approach consisting of focus groups (n = 8 patients) and surveys (n = 36 patients). RESULTS: Patients were generally receptive to the concept of intermittent fasting, and many expressed an interest in attempting it themselves. Patients agreed that the study design was feasible in terms of study assessments, clinic visits, and biospecimen collection. Feedback on what could facilitate adherence included convenient appointment scheduling times and the availability of the research team to answer questions. Regarding recruitment, patients offered suggestions for study advertisements, with the majority concurring that a medical professional approaching them would increase their likelihood of participation

    PIK3CA alterations in Middle Eastern ovarian cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PI3K/AKTsignaling pathway plays an important role in cell growth, proliferation, and tumorgenesis of various malignancies. This signaling pathway has been shown to be frequently altered in several human cancers including ovarian cancers. However the role of this oncogenic signaling pathway has not been explored in the Middle Eastern epithelial ovarian cancer (EOC). Therefore, we investigated PI3K/AKT genetic alterations such as PIK3CA amplification, PIK3CA mutation, PTEN protein loss and their relationships with various clinicopathological characteristics in 156 EOCs.</p> <p>Results</p> <p>Fluorescence <it>in situ </it>hybridization (FISH) technique and DNA sequencing were used to analyze PIK3CA amplification and mutation respectively. Expression of PIK3CA protein expression (p110 α), PTEN, p-AKT and Ki-67 was analyzed by immunohistochemistry. <it>PIK3CA </it>amplification was seen in 54 of 152 (35.5%) EOC cases analyzed; PIK3CA gene mutations in 6/153 EOC (3.9%); <it>KRAS </it>mutations in 3/154 EOC (1.9%), BRAF mutations in 3/156 EOC (1.9%), p53 mutation in 50/154 EOC (32.5%), and loss of PTEN protein expression in 33/144 EOC (22.9%). p110 α overexpression was associated with increased phosphorylation of AKT-Ser 473 and with the proliferation marker Ki-67.</p> <p>Conclusion</p> <p>Our data showed mutual exclusivity between the molecular event of PIK3CA amplification and mutations in <it>PIK3CA</it>, <it>KRAS</it>, <it>BRAF </it>genes, which suggests that each of these alterations may individually be sufficient to drive ovarian tumor pathogenesis independently. High prevalence of genetic alterations in PI3K/AKT pathway in a Middle Eastern ovarian carcinoma provides genetic evidence supporting the notion that dysregulated PI3K/AKT pathways play an important role in the pathogenesis of ovarian cancers.</p

    Bioenergetic Adaptations in Chemoresistant Ovarian Cancer Cells.

    Get PDF
    Earlier investigations have revealed that tumor cells undergo metabolic reprogramming and mainly derive their cellular energy from aerobic glycolysis rather than oxidative phosphorylation even in the presence of oxygen. However, recent studies have shown that certain cancer cells display increased oxidative phosphorylation or high metabolically active phenotype. Cellular bioenergetic profiling of 13 established and 12 patient derived ovarian cancer cell lines revealed significant bioenergetics diversity. The bioenergetics phenotype of ovarian cancer cell lines correlated with functional phenotypes of doubling time and oxidative stress. Interestingly, chemosensitive cancer cell lines (A2780 and PEO1) displayed a glycolytic phenotype while their chemoresistant counterparts (C200 and PEO4) exhibited a high metabolically active phenotype with the ability to switch between oxidative phosphorylation or glycolysis. The chemosensitive cancer cells could not survive glucose deprivation, while the chemoresistant cells displayed adaptability. In the patient derived ovarian cancer cells, a similar correlation was observed between a high metabolically active phenotype and chemoresistance. Thus, ovarian cancer cells seem to display heterogeneity in using glycolysis or oxidative phosphorylation as an energy source. The flexibility in using different energy pathways may indicate a survival adaptation to achieve a higher \u27cellular fitness\u27 that may be also associated with chemoresistance

    Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction.

    Get PDF
    Caloric restriction (CR) was recently demonstrated by us to restrict ovarian cancer growth in vivo. CR resulted in activation of energy regulating enzymes adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) followed by downstream inhibition of Akt-mTOR. In the present study, we investigated the effects of metformin on ovarian cancer growth in mice fed a high energy diet (HED) and regular diet (RD) and compared them to those seen with CR in an immunocompetent isogeneic mouse model of ovarian cancer. Mice either on RD or HED diet bearing ovarian tumors were treated with 200 mg/kg metformin in drinking water. Metformin treatment in RD and HED mice resulted in a significant reduction in tumor burden in the peritoneum, liver, kidney, spleen and bowel accompanied by decreased levels of growth factors (IGF-1, insulin and leptin), inflammatory cytokines (MCP-1, IL-6) and VEGF in plasma and ascitic fluid, akin to the CR diet mice. Metformin resulted in activation of AMPK and SIRT1 and inhibition of pAkt and pmTOR, similar to CR. Thus metformin can closely mimic CR\u27s tumor suppressing effects by inducing similar metabolic changes, providing further evidence of its potential not only as a therapeutic drug but also as a preventive agent

    Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer

    Get PDF
    BACKGROUND: Nanomedicine is a very promising field and nanomedical drugs have recently been used as therapeutic agents against cancer. In a previous study, we showed that Nanoceria (NCe), nanoparticles of cerium oxide, significantly inhibited production of reactive oxygen species, cell migration and invasion of ovarian cancer cells in vitro, without affecting cell proliferation and significantly reduced tumor growth in an ovarian cancer xenograft nude model. Increased expression of folate receptor-α, an isoform of membrane-bound folate receptors, has been described in ovarian cancer. To enable NCe to specifically target ovarian cancer cells, we conjugated nanoceria to folic acid (NCe-FA). Our aim was to investigate the pre-clinical efficacy of NCe-FA alone and in combination with Cisplatin. METHODS: Ovarian cancer cell lines were treated with NCe or NCe-FA. Cell viability was assessed by MTT and colony forming units. In vivo studies were carried in A2780 generated mouse xenografts treated with 0.1 mg/Kg NCe, 0.1 mg/Kg; NCe-FA and cisplatinum, 4 mg/Kg by intra-peritoneal injections. Tumor weights and burden scores were determined. Immunohistochemistry and toxicity assays were used to evaluate treatment effects. RESULTS: We show that folic acid conjugation of NCe increased the cellular NCe internalization and inhibited cell proliferation. Mice treated with NCe-FA had a lower tumor burden compared to NCe, without any vital organ toxicity. Combination of NCe-FA with cisplatinum decreased the tumor burden more significantly. Moreover, NCe-FA was also effective in reducing proliferation and angiogenesis in the xenograft mouse model. CONCLUSION: Thus, specific targeting of ovarian cancer cells by NCe-FA holds great potential as an effective therapeutic alone or in combination with standard chemotherapy

    Onward and Upward: The Legacy of Black Urologists in America

    Get PDF
    In partnership with the American Urological Association\u27s William P. Didusch Center for Urologic History, Henry Ford Health hosted a Grand Rounds event from 7 – 9 a.m. Wednesday, June 14, in the Buerki Auditorium at Henry Ford Hospital. The event highlights the contributions of Black urologists to the history of medicine despite systemic racism in the medical field and across the country. Covering the impact of exclusion and segregation in the past, as well as present day issues such as microaggressions and cultural insensitivity, the lecture and discussion calls for a future of successfully integrating medicine to achieve better outcomes for physicians and their patients. The schedule of the event is as follows: 7 a.m.: Welcome by Craig Rogers, M.D., Chair, Department of Urology, Vattikuti Urology Institute. Introductory remarks by Adnan Munkarah, M.D., President, Care Delivery System and Chief Clinical Officer and Steven Kalkanis, M.D., CEO of Henry Ford Medical Group and CEO of Henry Ford Hospital. 7:10 a.m.: Keynote speaker Arthur L. Burnett II, M.D., MBA., FACS., professor of urology, Johns Hopkins University School of Medicine will present “Onward and Upward: The Legacy of Black Urologists in America. 7:30 a.m.: Panel discussion moderated by Linda McIntire, M.D., President, R. Frank Jones Urological Society, and graduate of Henry Ford urology program, featuring the panelists listed below. Melvin Hollowell, M.D., FACS Dr. Hollowell earned his medical degree in 1959 and has practiced in Detroit for 64 years. At 93 years young, he is still practicing today. Isaac Powell, M.D. Dr. Powell graduated with his medical degree in 1969 and became the first African American graduate from the Henry Ford Hospital urology program in 1974. Conrad Maitland, M.D. Dr. Maitland has been practicing for 40 years and is himself a survivor of prostate cancer - a disease that disproportionately affects Black men. Ray Littleton, M.D. Dr. Littleton joined the senior staff at Henry Ford Hospital in 1980 and helped pioneer minimally invasive surgery by performing the first percutaneous kidney stone removal in Michigan in 1983
    corecore