599 research outputs found
The antioxidant properties of Ce-containing bioactive glass nanoparticles explained by Molecular Dynamics simulations
Molecular dynamics simulations of two glass nanoparticles with composition 25Na2O·25CaO 50SiO2 mol% (Ce-K NP) and 46.1SiO2·24.4Na2O·26.9CaO· 2.6P2O5 mol.% (Ce-BG NP) doped with 3.6 mol% of CeO2 have been carried out in order to explain the enhanced antioxidant properties of the former glass with respect to the latter.
The present models show that the different catalase mimetic activity of the two NPs is related to the Ce3+/Ce4+ ratio exposed at their surface. In fact, this ratio is about 3.5 and 13 in the bulk and at the surface of the Ce-BG NP, and 1.0 and 2.1 in the bulk and at the surface of the Ce-K NPs, respectively. Since both oxidation states are necessary for the catalysis of the dismutation reaction of hydrogen peroxides, NPs with a very high Ce3+/Ce4+ ratio possess poorer antioxidant properties.
Moreover, our simulations reveal that the already low silicate connectivity found in the bulk glasses examined here is further reduced on the nanoparticle surface, whereas the Na+/Ca2+ ratio rapidly increases. Sodium, calcium and cerium sites in proximity of the surface are found to be under-coordinated, prone to quickly react with water present in physiological environments, thus accelerating the glass biodegradatio
Patterns of Individual Shopping Behavior
Much of economic theory is built on observations of aggregate, rather than
individual, behavior. Here, we present novel findings on human shopping
patterns at the resolution of a single purchase. Our results suggest that much
of our seemingly elective activity is actually driven by simple routines. While
the interleaving of shopping events creates randomness at the small scale, on
the whole consumer behavior is largely predictable. We also examine
income-dependent differences in how people shop, and find that wealthy
individuals are more likely to bundle shopping trips. These results validate
previous work on mobility from cell phone data, while describing the
unpredictability of behavior at higher resolution.Comment: 4 pages, 5 figure
Experience with model-based performance, reliability and adaptability assessment of a complex industrial architecture
In this paper, we report on our experience with the application of validated models to assess performance, reliability, and adaptability of a complex mission critical system that is being developed to dynamically monitor and control the position of an oil-drilling platform. We present real-time modeling results that show that all tasks are schedulable. We performed stochastic analysis of the distribution of task execution time as a function of the number of system interfaces. We report on the variability of task execution times for the expected system configurations. In addition, we have executed a system library for an important task inside the performance model simulator. We report on the measured algorithm convergence as a function of the number of vessel thrusters. We have also studied the system architecture adaptability by comparing the documented system architecture and the implemented source code. We report on the adaptability findings and the recommendations we were able to provide to the systemâs architect. Finally, we have developed models of hardware and software reliability. We report on hardware and software reliability results based on the evaluation of the system architecture
A prospective cohort study of long-term cognitive changes in older Medicare beneficiaries
<p>Abstract</p> <p>Background</p> <p>Promoting cognitive health and preventing its decline are longstanding public health goals, but long-term changes in cognitive function are not well-documented. Therefore, we first examined long-term changes in cognitive function among older Medicare beneficiaries in the Survey on Assets and Health Dynamics among the Oldest Old (AHEAD), and then we identified the risk factors associated with those changes in cognitive function.</p> <p>Methods</p> <p>We conducted a secondary analysis of a prospective, population-based cohort using baseline (1993-1994) interview data linked to 1993-2007 Medicare claims to examine cognitive function at the final follow-up interview which occurred between 1995-1996 and 2006-2007. Besides traditional risk factors (i.e., aging, age, race, and education) and adjustment for baseline cognitive function, we considered the reason for censoring (entrance into managed care or death), and post-baseline continuity of care and major health shocks (hospital episodes). Residual change score multiple linear regression analysis was used to predict cognitive function at the final follow-up using data from telephone interviews among 3,021 to 4,251 (sample size varied by cognitive outcome) baseline community-dwelling self-respondents that were â„ 70 years old, not in managed Medicare, and had at least one follow-up interview as self-respondents. Cognitive function was assessed using the 7-item Telephone Interview for Cognitive Status (TICS-7; general mental status), and the 10-item immediate and delayed (episodic memory) word recall tests.</p> <p>Results</p> <p>Mean changes in the number of correct responses on the TICS-7, and 10-item immediate and delayed word recall tests were -0.33, -0.75, and -0.78, with 43.6%, 54.9%, and 52.3% declining and 25.4%, 20.8%, and 22.9% unchanged. The main and most consistent risks for declining cognitive function were the baseline values of cognitive function (reflecting substantial regression to the mean), aging (a strong linear pattern of increased decline associated with greater aging, but with diminishing marginal returns), older age at baseline, dying before the end of the study period, lower education, and minority status.</p> <p>Conclusions</p> <p>In addition to aging, age, minority status, and low education, substantial and differential risks for cognitive change were associated with sooner vs. later subsequent death that help to clarify the terminal drop hypothesis. No readily modifiable protective factors were identified.</p
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy
A search for new physics is performed in events with two same-sign isolated
leptons, hadronic jets, and missing transverse energy in the final state. The
analysis is based on a data sample corresponding to an integrated luminosity of
4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of
7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of
140 increase in integrated luminosity over previously published results. The
observed yields agree with the standard model predictions and thus no evidence
for new physics is found. The observations are used to set upper limits on
possible new physics contributions and to constrain supersymmetric models. To
facilitate the interpretation of the data in a broader range of new physics
scenarios, information on the event selection, detector response, and
efficiencies is provided.Comment: Published in Physical Review Letter
Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV
The production of b jets in association with a Z/gamma* boson is studied
using proton-proton collisions delivered by the LHC at a centre-of-mass energy
of 7 TeV and recorded by the CMS detector. The inclusive cross section for
Z/gamma* + b-jet production is measured in a sample corresponding to an
integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross
section with Z/gamma* to ll (where ll = ee or mu mu) for events with the
invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level
with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and
the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.)
+(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also
studied and found to be in agreement with the predictions made by the MadGraph
event generator with the parton shower and the hadronisation performed by
PYTHIA.Comment: Submitted to the Journal of High Energy Physic
- âŠ