6,105 research outputs found
Body-freedom flutter of a 1/2-scale forward-swept-wing model, an experimental and analytical study
The aeroelastic phenomenon known as body-freedom flutter (BFF), a dynamic instability involving aircraft-pitch and wing-bending motions which, though rarely experienced on conventional vehicles, is characteristic of forward swept wing (FSW) aircraft was investigated. Testing was conducted in the Langley transonic dynamics tunnel on a flying, cable-mounted, 1/2-scale model of a FSW configuration with and without relaxed static stability (RSS). The BFF instability boundaries were found to occur at significantly lower airspeeds than those associated with aeroelastic wing divergence on the same model. For those cases with RSS, a canard-based stability augmentation system (SAS) was incorporated in the model. This SAS was designed using aerodynamic data measured during a preliminary tunnel test in which the model was attached to a force balance. Data from the subsequent flutter test indicated that BFF speed was not dependent on open-loop static margin but, rather, on the equivalent closed-loop dynamics provided by the SAS. Servo-aeroelastic stability analyses of the flying model were performed using a computer code known as SEAL and predicted the onset of BFF reasonably well
Graphene as a non-magnetic spin-current lens
In spintronics, the ability to transport magnetic information often depends
on the existence of a spin current traveling between two different magnetic
objects acting as source and probe. A large fraction of this information never
reaches the probe and is lost because the spin current tends to travel
omni-directionally. We propose that a curved boundary between a gated and a
non-gated region within graphene acts as an ideal lens for spin currents
despite being entirely of non-magnetic nature. We show as a proof of concept
that such lenses can be utilized to redirect the spin current that travels away
from a source onto a focus region where a magnetic probe is located, saving a
considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure
Graphene-based spin-pumping transistor
We demonstrate with a fully quantum-mechanical approach that graphene can
function as gate-controllable transistors for pumped spin currents, i.e., a
stream of angular momentum induced by the precession of adjacent
magnetizations, which exists in the absence of net charge currents.
Furthermore, we propose as a proof of concept how these spin currents can be
modulated by an electrostatic gate. Because our proposal involves nano-sized
systems that function with very high speeds and in the absence of any applied
bias, it is potentially useful for the development of transistors capable of
combining large processing speeds, enhanced integration and extremely low power
consumption
- …