4,072 research outputs found

    Electronic oscillations in paired polyacetylene chains

    Full text link
    An interacting pair of polyacetylene chains are initially modeled as a couple of undimerized polymers described by a Hamiltonian based on the tight-binding model representing the electronic behavior along the linear chain, plus a Dirac's potential double well representing the interaction between the chains. A theoretical field formalism is employed, and we find that the system exhibits a gap in its energy band due to the presence of a mass-matrix term in the Dirac's Lagrangian that describes the system. The Peierls instability is introduced in the chains by coupling a scalar field to the fermions of the theory via spontaneous symmetry breaking, to obtain a kink-like soliton, which separates two vacuum regions, i.e., two spacial configurations (enantiomers) of the each molecule. Since that mass-matrix and the pseudo-spin operator do not commute in the same quantum representation, we demonstrate that there is a particle oscillation phenomenon with a periodicity equivalent to the Bloch oscillations.Comment: 4 pages, 1 figure.to appear in Solid State Communication

    Photon mass as a probe to extra dimensions

    Get PDF
    In this manuscript we show that the geometrical localization mechanism implies a four dimensional mass for the photon. The consistence of the model provides a mass given exactly by mγ=R/4m_{\gamma}=\sqrt{R}/4 where RR is the Ricci scalar. As a consequence, the cosmological photon has a mass related to the vacuum solution of the Einstein equation. At the present age of the universe we have a dS vacuum with R=4ΛR=4\Lambda, where Lambda is a positive cosmological constant. With this we find that mγ≈2×10−69m_{\gamma}\approx 2\times 10^{-69} kg, which is below the present experimental upper bounds, and such correction may be observed in the next years with more precise measurements. By considering the value of RR inside some astrophysical sources and environments we find that the bound is also satisfied. The experimental verification of this mass, beyond pointing to the existence of extra dimensions, would imply in a fundamental change in cosmology, astrophysics and in particle physics since the same mechanism is valid for non-abelian gauge fields.Comment: 4 page

    Casimir Effect in the Rainbow Einstein's Universe

    Full text link
    In the present paper we investigate the effects caused by the modification of the dispersion relation obtained by solving the Klein-Gordon equation in the closed Einstein's universe in the context of rainbow's gravity models. Thus, we analyse how the quantum vacuum fluctuations of the scalar field are modified when compared with the results obtained in the usual General Relativity scenario. The regularization, and consequently the renormalization, of the vacuum energy is performed adopting the Epstein-Hurwitz and Riemann's zeta functions.Comment: 15 pages, 1 figure. To appear in Europhysics Letter
    • …
    corecore