7 research outputs found
Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm.
Ulifloxacin is the active form of the prodrug prulifloxacin and shows a highly potent antipseudomonal activity. In this study, we examined the combined effect of fosfomycin and ulifloxacin against Pseudomonas aeruginosa (P. aeruginosa) growing in a biofilm using a modified Robbins device with artificial urine, and compared it to that of the combination of fosfomycin and ciprofloxacin or levofloxacin. An ATP bioluminescence assay was used to evaluate the antibacterial activity of the agents against sessile cells in a mature biofilm developed on a silicon disk. The total bioactivity of P. aeruginosa growing in a biofilm that had not been fully eradicated by fosfomycin or any of the fluoroquinolones alone at 10 times the MIC decreased after combination treatment with fosfomycin and fluoroquinolones. Morphological changes occurred in a time-dependent fashion; namely, swollen and/or rounding cells emerged within a couple of hours after combination treatment, marking the initial stage in the process leading to the destruction of the biofilms. We could not find any difference among the 3 fluoroquinolones with regard to their synergistic effects when administered with fosfomycin. The combination treatment of fosfomycin and fluoroquinolones with highly potent antipseudomonal activities was effective in eradicating sessile cells of P. aeruginosa in the biofilm and promises to be beneficial against biofilm-associated infectious diseases.</p
In vitro Activities of Oral Cephem and Telithromycin Against Clinical Isolates of Major Respiratory Pathogens in Japan
The in vitro antibacterial activities of oral cephem antibiotics and ketolide telithromycin against major respiratory pathogens possessing β-lactam-resistant mutations (within the pbp gene) and/or macrolide-resistant genes (erm and mef) were examined in clinical isolates collected at 66 institutes in all over the Japan between 2002 and 2003. Telithromycin showed the strongest antibacterial activity against methicillin-susceptible Staphylococcus aureus strains with and without macrolide-resistant genes, such as ermA or ermC gene. All the cephem antibiotics showed potent antibacterial activity against Streptococcus pyogenes, with minimum inhibitory concentrations (MICs) of 0.015 mg/L or lower. Cefdinir had a much higher MIC90 against genotypic penicillin-resistant Streptococcus pneumoniae (gPRSP) than cefditoren and cefcapene (8 mg/L cefdinir vs. 1 mg/L cefditoren and cefcapene). The majority of gPRSP harbored either ermB or mefA, and the antibacterial activity of telithromycin against these strains was decreased however some susceptibility was still sustained. Cefditoren exerted the strongest antibacterial activity against β-lactamase-negative ampicillin-resistant Haemophilus influenzae, with an MIC90 of 0.5 mg/L. These results underline the importance of checking the susceptibility and selecting an appropriate antibiotic against target pathogens