18 research outputs found

    Current Status and Future Potential of Robotic Surgery for Gastrointestinal Cancer

    Get PDF
     Robotic surgery has built on innovations in areas such as medical engineering and optical technology. Laparoscopic surgery has been successfully adapted for gastric, colon, and rectal cancer surgeries over the past two decades with numerous clinical trials showing oncological results comparable to those of open surgery. These trials have also shown that the laparoscopic approach shortens postoperative recovery time and decreases complication rates. Another advantage of minimally invasive techniques for the resection of gastric, colon, and rectal cancers is improved visualization of the surgical field. Despite the near absence of tactile feedback, robotic surgery has overcome many of the challenges inherent in laparoscopic surgery through features such as 3D vision, stable magnification, EndoWrist instruments, physiological tremor filtering, and motion scaling. Robotic surgery is not yet widely used in esophageal cancer surgery or in a pancreaticoduodenectomy for pancreatic cancer due to anatomical difficulties and the lack of a suitable approach. Comparative studies of robotic and laparoscopic surgery have shown similar results in terms of perioperative management, oncologic evaluation, and functional outcomes. However, it is also true that the high cost and lack of tactile feedback in robotic surgery are major limitations in terms of current robotic technology becoming the worldwide standard for minimally invasive surgery. The future of robotic surgery will require cost reduction, the development of new platforms and technologies, the creation and validation of curricula and virtual simulators, and confirmation through appropriate randomized controlled clinical trials

    Multimodal Imaging of Microvascular Abnormalities in Retinal Vein Occlusion

    No full text
    The technologies of ocular imaging modalities such as optical coherence tomography (OCT) and OCT angiography (OCTA) have progressed remarkably. Of these in vivo imaging modalities, recently advanced OCT technology provides high-resolution images, e.g., histologic imaging, enabling anatomical analysis of each retinal layer, including the photoreceptor layers. Recently developed OCTA also visualizes the vascular networks three-dimensionally, which provides better understanding of the retinal deep capillary layer. In addition, ex vivo analysis using autologous aqueous or vitreous humor shows that inflammatory cytokine levels including vascular endothelial growth factor (VEGF) are elevated and correlated with the severity of macular edema (ME) in eyes with retinal vein occlusion (RVO). Furthermore, a combination of multiple modalities enables deeper understanding of the pathology. Regarding therapy, intravitreal injection of anti-VEGF drugs provides rapid resolution of ME and much better visual improvements than conventional treatments in eyes with RVO. Thus, the technologies of examination and treatment for managing eyes with RVO have progressed rapidly. In this paper, we review the multimodal imaging and therapeutic strategies for eyes with RVO with the hope that it provides better understanding of the pathology and leads to the development of new therapies
    corecore