6 research outputs found
Not Available
Not AvailableThe present study investigated the prevalence of Extended-Spectrum Beta Lactamase (ESBL) -producing E. coli and K. pneumoniae from the food fishes in retail markets in Assam, India. A total of 54 ESBL-producing E. coli and 12 K. pneumoniae isolates were recovered from 79 fish samples and were analyzed for antimicrobial resistance genes (ARGs) and virulence genes. E. coli isolates were categorized as multi drug resistant with resistance up to 12 different antibiotics with multiple antibiotic resistances (MAR) index ranging from 0.26 to 0.63. In E. coli, 100% resistance to cefotaxime along with 6% resistance to ceftazidime (third-generation cephalosporins) was observed. Moreover, 85% of the E. coli isolates were resistant to cefepime, a fourth-generation cephalosporin. K. pneumoniae showed resistance to 11 different antibiotics with MAR index value ranging from 0.21 to 0.57. All K. pneumoniae isolates showed 100% resistance to cefotaxime, 67% resistance to ceftazidime and 75% resistance to cefepime. Molecular characterization of ARGs revealed the presence of CTX-M group 1(CTX-M-15) in almost all E. coli isolates (98%, n = 53) and 100% in K. pneumoniae. A combination of uniplex and multiplex PCRs revealed fewer ARGs in E. coli isolates, with each isolate carrying 3 to 5 genes (tetA, dfrA1, sul1, sul2, qnrB, qnrS, aac(6ʹ)-Ib-cr). Majority of the E. coli were assigned to low virulence phylogroup B1 and A while 8% of them belonged to pathogenic phylogroup D. 31 unique genetic profiles were identified for E. coli isolates by PulsedField Gel Electrophoresis (PFGE) typing. K. pneumoniae isolates were highly diverse with 11 unique genetic profiles and a substantial ARG profile (blaTEM, blaSHV, blaOXA-1-like, tetA, strA, strB, dfrA1, sul1, sul2, qnrB, qnrS, aac (6ʹ)-Ib-cr, oqxA, oqxB). The frequency of ARGs ranged between 4 and 11. All K. pneumoniae isolates belonged to capsular serotype with wzi gene. Virulence gene iutA was prominent in all isolates while ybtS and kfu were confirmed in two isolates. Our findings raise concerns that fishes bought for consumption may serve as potential reservoirs of AMR genes and pose serious threat to public health. The study emphasizes the need for extensive surveillance of resistant strains in aquaculture and related settings, their in-depth analysis of population structure and transmission dynamics.Not Availabl
Not Available
Not AvailableThis study reports the distribution of enterotoxigenic determinants among staphylococci and the susceptibility of staphylococci to various classes of antibiotics. We observed all the isolates as resistant to beta-lactam antibiotics and a few as resistant to non-beta-lactam antibiotics such as clindamycin (47.4%), erythromycin (44.7%), gentamicin (23.7%), norfloxacin (34.2%), tetracycline (26.3%), trimethoprim-sulfamethoxazole (15.8%) etc. The resistance of S. sciuri (n = 1) and S. haemolyticus (n = 1) to rifampicin and intermediate resistance of S. gallinarum (n = 2) to teicoplanin, a high-end antibiotic, are also observed in this study. The multidrug- resistance (≥ 3 classes of antibiotics) was recorded in 23 (60.5%) isolates. The virulomes such as sea, seb, seg and sei were identified predominantly in S. haemolyticus. Surprisingly, certain isolates which were phenotypically confirmed as biofilm-producers by Congo red agar (CRA) test did not harbor biofilm-associated loci. This implies the protein-mediated mechanism of biofilm formation as an alternative to polysaccharide intercellular adhesin (PIA) in staphylococci. However, icaAD locus which encodes PIA was identified in 10 (26.3%) isolates and the eno locus, encoding elastin-binding protein which can accelerate the biofilm production, is identified in all the isolates. The possession of type V SCCmec elements by the S. haemolyticus (15.8%) raised the concern about the rapid dissemination of mecA gene to other species of staphylococci including the virulent S. aureus. In short, this study acknowledges the toxigenicity of coagulase-negative staphylococci (CoNS). Through this study, surveillance of antimicrobial resistance and transference of virulomes in staphylococci is warrantedNot Availabl
The CRISPR/Cas system as an antimicrobial resistance strategy in aquatic ecosystems
With the growing population, demand for food has dramatically increased, and fisheries, including aquaculture, are expected to play an essential role in sustaining demand with adequate quantities of protein and essential vitamin supplements, employment generation, and GDP growth. Unfortunately, the incidence of emerging/re-emerging AMR pathogens annually occurs because of anthropogenic activities and the frequent use of antibiotics in aquaculture. These AMR pathogens include the WHO's top 6 prioritized ESKAPE pathogens (nosocomial pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), extended-spectrum beta lactases (ESBLs) and carbapenemase-producing E. coli, which pose major challenges to the biomagnification of both nonnative and native antibiotic-resistant bacteria in capture and cultured fishes. Although implementing the rational use of antibiotics represents a promising mitigation measure, this approach is practically impossible due to the lack of awareness among farmers about the interplay between antimicrobial use and the emergence of antimicrobial resistance (AMR). Nevertheless, to eradicate these 'superbugs,' CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR associate protein) has turned out to be a novel approach owing to its ability to perform precise site-directed targeting/knockdown/reversal of specific antimicrobial resistance genes in vitro and to distinguish AMR-resistant bacteria from a plethora of commensal aquatic bacteria. Along with highlighting the importance of virulent multidrug resistance genes in bacteria, this article aims to provide a holistic picture of CRISPR/Cas9-mediated genome editing for combating antimicrobial-resistant bacteria isolated from various aquaculture and marine systems, as well as insights into different types of CRISPR/Cas systems, delivery methods, and challenges associated with developing CRISPR/Cas9 antimicrobial agents.</p
Not Available
Not AvailableThe epidemiology and toxigenicity of MRSA in the fishery environment are poorly understood. In this study, methicillin-resistant Staphylococcus aureus (MRSA) (n = 1) and methicillin-susceptible S. aureus (MSSA) (n=2) from retail fish were subjected to comprehensive genome analysis. Here, we report the occurrence of ST672-MRSA-IV/t1309 and ST5-MSSA/t105 for the first time from India in the fishery environment. The resistome of the isolates was in concordance with their phenotypic resistance pattern. Phenotypically, the resistance profile of MSSA isolates (n = 2) was AMP-CLI-ERY-NOR-PEN. For MRSA (n = 1), it was AMP-CFZ-CLI-ERY-NOR-OXA-PEN. The antibiotic efflux genes and mutations in the antibiotic target accounted for fluoroquinolone resistance whereas methicillin resistance was conferred through possession of a mecA gene. Similarly, all three isolates carried a similar array of virulence factors. The conjugative plasmid inc18 and rep family 10 plasmids were found in two of the three isolates. This study documents the MRSA carrying SCCmec IVa elements which are the markers of community-associated MRSA (CA-MRSA). Through the possession of SCCmec IV elements, which are smaller than other types of SCCmec, MRSA can contribute to the rapid dissemination of antimicrobial resistance and virulence factors. In short, our findings highlighted that the presence of ST672-MRSA in fishery environments may pose a risk to human healthNot Availabl
Not Available
Not AvailableKlebsiella quasipneumoniae is a recently described species and often misidentified as Klebsiella pneumoniae. Here, we report the genomic characterization of Klebsiella quasipneumoniae subsp. similipneumoniae (India238 strain) isolated from fish. The annotated genome acknowledged the presence of blaCTX-M-15, blaOKP-B-1, fosA5, oqxAB and virulence genes. The strain with ST1699 and serotypes KL52 and OL103 also harboured insertion sequences (ISs): ISKpn26 and ISEc9. Three complete phage genomes were identified in contigs 1 and 6 of the bacterial genome, enhancing the prospects of genome manipulation. The study highlights the pitfall of conventional microbiological identification methods to distinguish K. pneumoniae and K. quasipneumoniae. This is the first Indian study documenting the incidence of extended-spectrum beta-lactamase (ESBL)-producing K. quasipneumoniae subsp. similipneumoniae from a non-clinical environment, equipped with virulomes and associated mobile genetic elements. Given that fish can act as a potential vector for transmission of antimicrobial resistance genes, our findings have paramount importance on human health.Not Availabl