205 research outputs found
Pain and learning in primary school: a population-based study.
Despite the frequency of pain among children, little is known about its effects on learning and school outcomes. The objective of this study was to quantify the association of pain and academic achievement while taking into account the presence of co-occurring emotional symptoms. A population-based stratified random sample of 1239 students aged 8 to 9 years from primary schools in Melbourne, Australia, was recruited for the Childhood to Adolescence Transition Study. Children indicated sites of pain that had lasted for a day or longer in the past month using a pain manikin. Depressive- and anxiety-related symptoms were assessed using child-reported items. National assessment results for reading and numeracy were used to measure academic achievement. Sixty-five percent of children reported pain in at least 1 body site and 16% reported chronic pain. Increasing number of pain sites was associated with poorer reading scores in a dose-response fashion (β = -3.1; 95% confidence interval -4.9 to -1.3; P < 0.001). The association was only partly attenuated when adjusting for emotional symptoms (β = -2.6; 95% confidence interval -4.5 to -0.8; P < 0.001) and was not moderated by emotional symptoms. Children with chronic pain were a year behind their peers in both reading and numeracy. Among primary school students, pain was associated with lower reading scores even after adjusting for the presence of emotional symptoms. Although population-based longitudinal studies will be required to ascertain consistency and possible causality, grounds exist for considering pain and emotional symptoms in the assessment of children with reading difficulties
Expanding the phenotype in argininosuccinic aciduria: need for new therapies
OBJECTIVES: This UK-wide study defines the natural history of argininosuccinic aciduria and compares long-term neurological outcomes in patients presenting clinically or treated prospectively from birth with ammonia-lowering drugs. METHODS: Retrospective analysis of medical records prior to March 2013, then prospective analysis until December 2015. Blinded review of brain MRIs. ASL genotyping. RESULTS: Fifty-six patients were defined as early-onset (n = 23) if symptomatic < 28 days of age, late-onset (n = 23) if symptomatic later, or selectively screened perinatally due to a familial proband (n = 10). The median follow-up was 12.4 years (range 0-53). Long-term outcomes in all groups showed a similar neurological phenotype including developmental delay (48/52), epilepsy (24/52), ataxia (9/52), myopathy-like symptoms (6/52) and abnormal neuroimaging (12/21). Neuroimaging findings included parenchymal infarcts (4/21), focal white matter hyperintensity (4/21), cortical or cerebral atrophy (4/21), nodular heterotopia (2/21) and reduced creatine levels in white matter (4/4). 4/21 adult patients went to mainstream school without the need of additional educational support and 1/21 lives independently. Early-onset patients had more severe involvement of visceral organs including liver, kidney and gut. All early-onset and half of late-onset patients presented with hyperammonaemia. Screened patients had normal ammonia at birth and received treatment preventing severe hyperammonaemia. ASL was sequenced (n = 19) and 20 mutations were found. Plasma argininosuccinate was higher in early-onset compared to late-onset patients. CONCLUSIONS: Our study further defines the natural history of argininosuccinic aciduria and genotype-phenotype correlations. The neurological phenotype does not correlate with the severity of hyperammonaemia and plasma argininosuccinic acid levels. The disturbance in nitric oxide synthesis may be a contributor to the neurological disease. Clinical trials providing nitric oxide to the brain merit consideration
Short and long-term acceptability and efficacy of extended-release cornstarch in the hepatic glycogen storage diseases: results from the Glyde study
Background: Hypoglycaemia is the primary manifestation of all the hepatic types of glycogen storage disease (GSD). In 2008, Glycosade®, an extended-release waxy maize cornstarch, was reported as an alternative to uncooked cornstarch (UCCS) which could prolong the duration of fasting in the GSD population. To date, there has been minimal published experience in (a) young children, (b) the ketotic forms of GSD, and (c) with daytime dosing. The Glyde study was created as a prospective, global initiative to test the efficacy and tolerance of Glycosade use across a broader and more diverse population.
Methods: A randomised double-blind cross-over fasting study assessing the tolerance and efficacy of Glycosade compared with cornstarch was performed across disease types and ages. Participants and clinicians chose the product deemed superior, whilst still blinded. Participants were followed for 2 years to assess long-term metabolic control, growth, and quality of life.
Results: Sixty-one participants (age 2–62 years; 59% female) were enrolled, and 58 participants completed the fasting studies (28 GSD I; 30 GSD III, VI, IX). Glycosade improved duration of fasting in GSD I and duration of fasting without ketosis in the ketotic forms. Chronic Glycosade use was chosen by 69% of participants. Those treated with Glycosade for the 2-year chronic phase used fewer doses of therapy while markers of metabolic control remained stable.
Conclusion: The Glyde study is the first multi-centre international trial demonstrating the efficacy and tolerance of Glycosade in a large cohort of hepatic GSD patients across a diverse international population. The ability to use fewer doses of therapy per day and avoidance of overnight therapy may improve compliance, safety, and quality of life without sacrificing metabolic control
Associations between language development and skin conductance responses to faces and eye gaze in children with autism spectrum disorder
Attention to social stimuli is associated with language development, and arousal is associated with the increased viewing of stimuli. We investigated whether skin conductance responses (SCRs) are associated with language development in ASD: a population that shows abnormalities in both attention to others and language development. A sample of 32 children with ASD (7 y – 15 y; M =9 y) was divided into two groups, based on language onset histories. A typically developing comparison group consisted of 18 age and IQ matched children. SCRs were taken as the participants viewed faces. SCRs differentiated the ASD group based on language onset and were associated with abnormal attention to gaze in infancy and subsequent language development
Coral Colonisation of an Artificial Reef in a Turbid Nearshore Environment, Dampier Harbour, Western Australia
A 0.6 hectare artificial reef of local rock and recycled concrete sleepers was constructed in December 2006 at Parker Point in the industrial port of Dampier, western Australia, with the aim of providing an environmental offset for a nearshore coral community lost to land reclamation. Corals successfully colonised the artificial reef, despite the relatively harsh environmental conditions at the site (annual water temperature range 18-32°C, intermittent high turbidity, frequent cyclones, frequent nearby ship movements). Coral settlement to the artificial reef was examined by terracotta tile deployments, and later stages of coral community development were examined by in-situ visual surveys within fixed 25 x 25 cm quadrats on the rock and concrete substrates. Mean coral density on the tiles varied from 113 ± 17 SE to 909 ± 85 SE per m2 over five deployments, whereas mean coral density in the quadrats was only 6.0 ± 1.0 SE per m2 at eight months post construction, increasing to 24.0 ± 2.1 SE per m2 at 62 months post construction. Coral taxa colonising the artificial reef were a subset of those on the surrounding natural reef, but occurred in different proportions-Pseudosiderastrea tayami, Mycedium elephantotus and Leptastrea purpurea being disproportionately abundant on the artificial reef. Coral cover increased rapidly in the later stages of the study, reaching 2.3 ± 0.7 SE % at 62 months post construction. This study indicates that simple materials of opportunity can provide a suitable substrate for coral recruitment in Dampier Harbour, and that natural colonisation at the study site remains sufficient to initiate a coral community on artificial substrate despite ongoing natural and anthropogenic perturbations. © 2013 Blakeway et al
Breast cancer metastasis to the bone: mechanisms of bone loss
Breast cancer frequently metastasizes to the skeleton, interrupting the normal bone remodeling process and causing bone degradation. Osteolytic lesions are the end result of osteoclast activity; however, osteoclast differentiation and activation are mediated by osteoblast production of RANKL (receptor activator for NFκB ligand) and several osteoclastogenic cytokines. Osteoblasts themselves are negatively affected by cancer cells as evidenced by an increase in apoptosis and a decrease in proteins required for new bone formation. Thus, bone loss is due to both increased activation of osteoclasts and suppression of osteoblasts. This review summarizes the current understanding of the osteolytic mechanisms of bone metastases, including a discussion of current therapies
Hedgehog Signaling in Tumor Cells Facilitates Osteoblast-Enhanced Osteolytic Metastases
The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh) pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon
Three-Dimensional Characterization of the Vascular Bed in Bone Metastasis of the Rat by Microcomputed Tomography (MicroCT)
BackgroundAngiogenesis contributes to proliferation and metastatic dissemination of cancer cells. Anatomy of blood vessels in tumors has been characterized with 2D techniques (histology or angiography). They are not fully representative of the trajectories of vessels throughout the tissues and are not adapted to analyze changes occurring inside the bone marrow cavities. Methodology/Principal Findings We have characterized the vasculature of bone metastases in 3D at different times of evolution of the disease. Metastases were induced in the femur of Wistar rats by a local injection of Walker 256/B cells. Microfil®, (a silicone-based polymer) was injected at euthanasia in the aorta 12, 19 and 26 days after injection of tumor cells. Undecalcified bones (containing the radio opaque vascular casts) were analyzed by microCT, and a first 3D model was reconstructed. Bones were then decalcified and reanalyzed by microCT; a second model (comprising only the vessels) was obtained and overimposed on the former, thus providing a clear visualization of vessel trajectories in the invaded metaphysic allowing quantitative evaluation of the vascular volume and vessel diameter. Histological analysis of the marrow was possible on the decalcified specimens. Walker 256/B cells induced a marked osteolysis with cortical perforations. The metaphysis of invaded bones became progressively hypervascular. New vessels replaced the major central medullar artery coming from the diaphyseal shaft. They sprouted from the periosteum and extended into the metastatic area. The newly formed vessels were irregular in diameter, tortuous with a disorganized architecture. A quantitative analysis of vascular volume indicated that neoangiogenesis increased with the development of the tumor with the appearance of vessels with a larger diameter. Conclusion This new method evidenced the tumor angiogenesis in 3D at different development times of the metastasis growth. Bone and the vascular bed can be identified by a double reconstruction and allowed a quantitative evaluation of angiogenesis upon time
- …