6,900 research outputs found
Asymptotically Matched Spacetime Metric for Non-Precessing, Spinning Black Hole Binaries
We construct a closed-form, fully analytical 4-metric that approximately
represents the spacetime evolution of non-precessing, spinning black hole
binaries from infinite separations up to a few orbits prior to merger. We
employ the technique of asymptotic matching to join a perturbed Kerr metric in
the neighborhood of each spinning black hole to a near-zone, post-Newtonian
metric farther out. The latter is already naturally matched to a far-zone,
post-Minkowskian metric that accounts for full temporal retardation. The result
is a 4-metric that is approximately valid everywhere in space and in a small
bundle of spatial hypersurfaces. We here restrict our attention to quasi-
circular orbits, but the method is valid for any orbital motion or physical
scenario, provided an overlapping region of validity or buffer zone exists. A
simple extension of such a metric will allow for future studies of the
accretion disk and jet dynamics around spinning back hole binaries
Measurement of the production of the four-fermion final states mediated by neutral current processes
Measurement of the production of the four-fermion final states mediated by neutral current processes
Sobrevivência de Colletotrichum gloeosporioides (Penz.) Sacc. em sementes de feijoa (Acca sellowiana Burr.) durante o armazenamento.
bitstream/CENARGEN/23822/1/cot080.pd
Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a
joint effort between members of the numerical relativity, analytical relativity
and gravitational-wave data analysis communities. The goal of the NRAR
collaboration is to produce numerical-relativity simulations of compact
binaries and use them to develop accurate analytical templates for the
LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and
extracting astrophysical information from them. We describe the results of the
first stage of the NRAR project, which focused on producing an initial set of
numerical waveforms from binary black holes with moderate mass ratios and
spins, as well as one non-spinning binary configuration which has a mass ratio
of 10. All of the numerical waveforms are analysed in a uniform and consistent
manner, with numerical errors evaluated using an analysis code created by
members of the NRAR collaboration. We compare previously-calibrated,
non-precessing analytical waveforms, notably the effective-one-body (EOB) and
phenomenological template families, to the newly-produced numerical waveforms.
We find that when the binary's total mass is ~100-200 solar masses, current EOB
and phenomenological models of spinning, non-precessing binary waveforms have
overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary
numerical waveforms with mass ratios <= 4, when maximizing over binary
parameters. This implies that the loss of event rate due to modelling error is
below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to
five non-spinning waveforms with mass ratio smaller than 6 have overlaps above
99.7% with the numerical waveform with a mass ratio of 10, without even
maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio
Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV
The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
Energy dependence of Cronin momentum in saturation model for and collisions
We calculate dependence of Cronin momentum for and
collisions in saturation model. We show that this dependence is consistent with
expectation from formula which was obtained using simple dimentional
consideration. This can be used to test validity of saturation model (and
distinguish among its variants) and measure dependence of saturation
momentum from experimental data.Comment: LaTeX2e, 12 pages, 8 figure
- …