11 research outputs found

    Engineering Dynamical Sweet Spots to Protect Qubits from 1/ff Noise

    Full text link
    Protecting superconducting qubits from low-frequency noise is essential for advancing superconducting quantum computation. Based on the application of a periodic drive field, we develop a protocol for engineering dynamical sweet spots which reduce the susceptibility of a qubit to low-frequency noise. Using the framework of Floquet theory, we prove rigorously that there are manifolds of dynamical sweet spots marked by extrema in the quasi-energy differences of the driven qubit. In particular, for the example of fluxonium biased slightly away from half a flux quantum, we predict an enhancement of pure-dephasing by three orders of magnitude. Employing the Floquet eigenstates as the computational basis, we show that high-fidelity single- and two-qubit gates can be implemented while maintaining dynamical sweet-spot operation. We further confirm that qubit readout can be performed by adiabatically mapping the Floquet states back to the static qubit states, and subsequently applying standard measurement techniques. Our work provides an intuitive tool to encode quantum information in robust, time-dependent states, and may be extended to alternative architectures for quantum information processing

    Floquet-engineered enhancement of coherence times in a driven fluxonium qubit

    Full text link
    We use the quasienergy structure that emerges when a fluxonium superconducting circuit is driven periodically to encode quantum information with dynamically induced flux-insensitive sweet spots. The framework of Floquet theory provides an intuitive description of these high-coherence working points located away from the half-flux symmetry point of the undriven qubit. This approach offers flexibility in choosing the flux bias point and the energy of the logical qubit states as shown in [\textit{Huang et al., 2020}]. We characterize the response of the system to noise in the modulation amplitude and DC flux bias, and experimentally demonstrate an optimal working point which is simultaneously insensitive against fluctuations in both. We observe a 40-fold enhancement of the qubit coherence times measured with Ramsey-type interferometry at the dynamical sweet spot compared with static operation at the same bias point.Comment: 12 pages, 7 figure

    Universal gates for protected superconducting qubits using optimal control

    Full text link
    We employ quantum optimal control theory to realize quantum gates for two protected superconducting circuits: the heavy-fluxonium qubit and the 0-Ď€\pi qubit. Utilizing automatic differentiation facilitates the simultaneous inclusion of multiple optimization targets, allowing one to obtain high-fidelity gates with realistic pulse shapes. For both qubits, disjoint support of low-lying wave functions prevents direct population transfer between the computational-basis states. Instead, optimal control favors dynamics involving higher-lying levels, effectively lifting the protection for a fraction of the gate duration. For the 0-Ď€\pi qubit, offset-charge dependence of matrix elements among higher levels poses an additional challenge for gate protocols. To mitigate this issue, we randomize the offset charge during the optimization process, steering the system towards pulse shapes insensitive to charge variations. Closed-system fidelities obtained are 99% or higher, and show slight reductions in open-system simulations.Comment: 12 pages, 6 figure

    Accurate methods for the analysis of strong-drive effects in parametric gates

    Full text link
    The ability to perform fast, high-fidelity entangling gates is an important requirement for a viable quantum processor. In practice, achieving fast gates often comes with the penalty of strong-drive effects that are not captured by the rotating-wave approximation. These effects can be analyzed in simulations of the gate protocol, but those are computationally costly and often hide the physics at play. Here, we show how to efficiently extract gate parameters by directly solving a Floquet eigenproblem using exact numerics and a perturbative analytical approach. As an example application of this toolkit, we study the space of parametric gates generated between two fixed-frequency transmon qubits connected by a parametrically driven coupler. Our analytical treatment, based on time-dependent Schrieffer-Wolff perturbation theory, yields closed-form expressions for gate frequencies and spurious interactions, and is valid for strong drives. From these calculations, we identify optimal regimes of operation for different types of gates including iiSWAP, controlled-Z, and CNOT. These analytical results are supplemented by numerical Floquet computations from which we directly extract drive-dependent gate parameters. This approach has a considerable computational advantage over full simulations of time evolutions. More generally, our combined analytical and numerical strategy allows us to characterize two-qubit gates involving parametrically driven interactions, and can be applied to gate optimization and cross-talk mitigation such as the cancellation of unwanted ZZ interactions in multi-qubit architectures.Comment: 20 pages, 9 figures, 62 reference

    Protected qubits, Floquet engineering and crosstalk suppression with superconducting circuits

    No full text
    Over the past decade, quantum circuits have been transitioning from being useful solely in fundamental physics research to having applications in a wide variety of fields. This has been made possible by the advancements in the coherence, coupling and optimal control of various elements of these quantum circuits. The experiments presented in this thesis solve critical challenges for the above mentioned areas. We provide the first experimental realization of a protected qubit having simultaneous robustness to relaxation and dephasing processes. We show a 40-fold improvement in the coherence time in fluxonium qubit by harnessing insights from Floquet engineering. Furthermore, we also demonstrate a coupling architecture for suppressing qubit-qubit crosstalk. The above works unlock new directions for improving the state of quantum systems
    corecore