2,605 research outputs found

    How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    Full text link
    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e. by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure.Comment: 22 page

    Notes on Euclidean Wilson loops and Riemann Theta functions

    Full text link
    The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal area surfaces in AdS5 space. In this paper we consider the case of Euclidean flat Wilson loops which are related to minimal area surfaces in Euclidean AdS3 space. Using known mathematical results for such minimal area surfaces we describe an infinite parameter family of analytic solutions for closed Wilson loops. The solutions are given in terms of Riemann theta functions and the validity of the equations of motion is proven based on the trisecant identity. The world-sheet has the topology of a disk and the renormalized area is written as a finite, one-dimensional contour integral over the world-sheet boundary. An example is discussed in detail with plots of the corresponding surfaces. Further, for each Wilson loops we explicitly construct a one parameter family of deformations that preserve the area. The parameter is the so called spectral parameter. Finally, for genus three we find a map between these Wilson loops and closed curves inside the Riemann surface.Comment: 35 pages, 7 figures, pdflatex. V2: References added. Typos corrected. Some points clarifie

    Mumford dendrograms and discrete p-adic symmetries

    Full text link
    In this article, we present an effective encoding of dendrograms by embedding them into the Bruhat-Tits trees associated to pp-adic number fields. As an application, we show how strings over a finite alphabet can be encoded in cyclotomic extensions of Qp\mathbb{Q}_p and discuss pp-adic DNA encoding. The application leads to fast pp-adic agglomerative hierarchic algorithms similar to the ones recently used e.g. by A. Khrennikov and others. From the viewpoint of pp-adic geometry, to encode a dendrogram XX in a pp-adic field KK means to fix a set SS of KK-rational punctures on the pp-adic projective line P1\mathbb{P}^1. To P1∖S\mathbb{P}^1\setminus S is associated in a natural way a subtree inside the Bruhat-Tits tree which recovers XX, a method first used by F. Kato in 1999 in the classification of discrete subgroups of PGL2(K)\textrm{PGL}_2(K). Next, we show how the pp-adic moduli space M0,n\mathfrak{M}_{0,n} of P1\mathbb{P}^1 with nn punctures can be applied to the study of time series of dendrograms and those symmetries arising from hyperbolic actions on P1\mathbb{P}^1. In this way, we can associate to certain classes of dynamical systems a Mumford curve, i.e. a pp-adic algebraic curve with totally degenerate reduction modulo pp. Finally, we indicate some of our results in the study of general discrete actions on P1\mathbb{P}^1, and their relation to pp-adic Hurwitz spaces.Comment: 14 pages, 6 figure

    Quantization of Fayet-Iliopoulos Parameters in Supergravity

    Full text link
    In this short note we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories. We argue that in supergravity, the Fayet-Iliopoulos parameter determines a lift of the group action to a line bundle, and such lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted in terms of moment maps and symplectic reductions, we argue that in supergravity the quantization of the Fayet-Iliopoulos parameter has a natural understanding in terms of linearizations in geometric invariant theory (GIT) quotients, the algebro-geometric version of symplectic quotients.Comment: 21 pages, utarticle class; v2: typos and tex issue fixe

    Exact solutions for a class of integrable Henon-Heiles-type systems

    Full text link
    We study the exact solutions of a class of integrable Henon-Heiles-type systems (according to the analysis of Bountis et al. (1982)). These solutions are expressed in terms of two-dimensional Kleinian functions. Special periodic solutions are expressed in terms of the well-known Weierstrass function. We extend some of our results to a generalized Henon-Heiles-type system with n+1 degrees of freedom.Comment: RevTeX4-1, 13 pages, Submitted to J. Math. Phy

    Structure of Matrix Elements in Quantum Toda Chain

    Full text link
    We consider the quantum Toda chain using the method of separation of variables. We show that the matrix elements of operators in the model are written in terms of finite number of ``deformed Abelian integrals''. The properties of these integrals are discussed. We explain that these properties are necessary in order to provide the correct number of independent operators. The comparison with the classical theory is done.Comment: LaTeX, 17 page

    The pre-WDVV ring of physics and its topology

    Full text link
    We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory, we give an elementary proof that the Whitehouse complex Δn\Delta_n is homotopy equivalent to a wedge of (n−2)!(n-2)! spheres of dimension n−4n-4. We also verify the Cohen-Macaulay property. Additionally, recurrences are given for the face enumeration of the complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table

    European Non-native Species in Aquaculture Risk Analysis Scheme - a summary of assessment protocols and decision support tools for use of alien species in aquaculture

    Get PDF
    The European Non-native Species in Aquaculture Risk Analysis Scheme (ENSARS) was developed in response to European 'Council Regulation No. 708/2007 of 11 June 2007 concerning use of alien and locally absent species in aquaculture' to provide protocols for identifying and evaluating the potential risks of using non-native species in aquaculture. ENSARS is modular in structure and adapted from non-native species risk assessment schemes developed by the European and Mediterranean Plant Protection Organisation and for the UK. Seven of the eight ENSARS modules contain protocols for evaluating the risks of escape, introduction to and establishment in open waters, of any non-native aquatic organism being used (or associated with those used) in aquaculture, that is, transport pathways, rearing facilities, infectious agents, and the potential organism, ecosystem and socio-economic impacts. A concluding module is designed to summarise the risks and consider management options. During the assessments, each question requires the assessor to provide a response and confidence ranking for that response based on expert opinion. Each module can also be used individually, and each requires a specific form of expertise. Therefore, a multidisciplinary assessment team is recommended for its completion

    Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p_x+ip_y paired superfluids

    Full text link
    Many trial wavefunctions for fractional quantum Hall states in a single Landau level are given by functions called conformal blocks, taken from some conformal field theory. Also, wavefunctions for certain paired states of fermions in two dimensions, such as p_x+ip_y states, reduce to such a form at long distances. Here we investigate the adiabatic transport of such many-particle trial wavefunctions using methods from two-dimensional field theory. One context for this is to calculate the statistics of widely-separated quasiholes, which has been predicted to be non-Abelian in a variety of cases. The Berry phase or matrix (holonomy) resulting from adiabatic transport around a closed loop in parameter space is the same as the effect of analytic continuation around the same loop with the particle coordinates held fixed (monodromy), provided the trial functions are orthonormal and holomorphic in the parameters so that the Berry vector potential (or connection) vanishes. We show that this is the case (up to a simple area term) for paired states (including the Moore-Read quantum Hall state), and present general conditions for it to hold for other trial states (such as the Read-Rezayi series). We argue that trial states based on a non-unitary conformal field theory do not describe a gapped topological phase, at least in many cases. By considering adiabatic variation of the aspect ratio of the torus, we calculate the Hall viscosity, a non-dissipative viscosity coefficient analogous to Hall conductivity, for paired states, Laughlin states, and more general quantum Hall states. Hall viscosity is an invariant within a topological phase, and is generally proportional to the "conformal spin density" in the ground state.Comment: 44 pages, RevTeX; v2 minor changes; v3 typos corrected, three small addition

    Minimal surfaces bounded by elastic lines

    Full text link
    In mathematics, the classical Plateau problem consists of finding the surface of least area that spans a given rigid boundary curve. A physical realization of the problem is obtained by dipping a stiff wire frame of some given shape in soapy water and then removing it; the shape of the spanning soap film is a solution to the Plateau problem. But what happens if a soap film spans a loop of inextensible but flexible wire? We consider this simple query that couples Plateau's problem to Euler's Elastica: a special class of twist-free curves of given length that minimize their total squared curvature energy. The natural marriage of two of the oldest geometrical problems linking physics and mathematics leads to a quest for the shape of a minimal surface bounded by an elastic line: the Euler-Plateau problem. We use a combination of simple physical experiments with soap films that span soft filaments, scaling concepts, exact and asymptotic analysis combined with numerical simulations to explore some of the richness of the shapes that result. Our study raises questions of intrinsic interest in geometry and its natural links to a range of disciplines including materials science, polymer physics, architecture and even art.Comment: 14 pages, 4 figures. Supplementary on-line material: http://www.seas.harvard.edu/softmat/Euler-Plateau-problem
    • …
    corecore