7 research outputs found

    Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP) cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development.</p> <p>Results</p> <p>Our results demonstrate that Lysophosphatidic Acid (LPA) and Sphingosine-1-phosphate (S1P) receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to G<sub>i/o </sub>G-proteins that inhibit adenylyl cyclase and to G<sub>q</sub>-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via G<sub>i/o </sub>coupled receptors in an Epidermal Growth Factor Receptor (EGFR)- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK.</p> <p>Conclusion</p> <p>Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.</p

    Effect of Acute Ingestion of Green Tea Extract and Lemon Juice on Oxidative Stress and Lipid Profile in Pigs Fed a High-Fat Diet.

    Get PDF
    Green tea and its catechins have been shown to ameliorate high fat diet-induced oxidative stress and hyperlipidemia. However, low bioavailability of catechins limits their therapeutic potential. Lemon juice (LJ) has been suggested to enhance the bioavailability of catechins in vitro. This study investigated the antioxidative and hypolipidemic efficacy of a single dose of green tea extract (GTE) or GTE plus LJ (GTE + LJ) in high-fat diet fed pigs. Sixteen pigs ingested a single dose of GTE (190 mg/kg/day) or GTE + LJ (0.75 mL/kg/day) mixed with low-fat (LF; 5% fat) or high-fat (HF; 22% fat) diets and blood samples were collected for 24 h. Plasma catechin level peaked at two hours, and gradually returned to baseline after six hours following the intake. The addition of LJ significantly increased plasma catechin level. The diet containing GTE did not lower plasma cholesterol and triacylglycerol (TG) concentrations, superoxide dismutase (SOD) and catalase activity, or malondialdehyde concentration in 24 h in HF-fed pigs. Addition of a single dose of LJ, however, significantly decreased plasma TG level in LF groups but did not cause further changes on any other markers compared to the GTE alone. Our findings indicate limited effect of a single meal containing GTE on plasma antioxidant enzymes, lipid profile, and lipid peroxidation in pigs and no significant synergistic/additive action of adding LJ to GTE within 24 h in pigs. A study with a longer treatment period is warranted to further understand the potential role of GTE in reducing HF diet-induced oxidative stress and the possible synergistic role of LJ

    Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs

    Get PDF
    Autologous bone grafting is the most effective treatment for long-bone nonunions, but it poses considerable risks to donors, necessitating the development of alternative therapeutics. Poly(ethylene glycol) (PEG) microencapsulation and BMP2 transgene delivery are being developed together to induce rapid bone formation. However, methods to make these treatments available for clinical applications are presently lacking. In this study we used mesenchymal stem cells (MSCs) due to their ease of harvest, replication potential, and immunomodulatory capabilities. MSCs were from sheep and pig due to their appeal as large animal models for bone nonunion. We demonstrated that cryopreservation of these microencapsulated MSCs did not affect their cell viability, adenoviral BMP2 production, or ability to initiate bone formation. Additionally, microspheres showed no appreciable damage from cryopreservation when examined with light and electron microscopy. These results validate the use of cryopreservation in preserving the viability and functionality of PEG-encapsulated BMP2-transduced MSCs

    MRI-Based Assessment of Intralesional Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Equine Tendonitis

    No full text
    Ultrasound-guided intralesional injection of mesenchymal stem cells (MSCs) is held as the benchmark for cell delivery in tendonitis. The primary objective of this study was to investigate the immediate cell distribution following intralesional injection of MSCs. Unilateral superficial digital flexor tendon (SDFT) lesions were created in the forelimb of six horses and injected with 10 × 106 MSCs labeled with superparamagnetic iron oxide nanoparticles (SPIOs) under ultrasound guidance. Assays were performed to confirm that there were no significant changes in cell viability, proliferation, migration, or trilineage differentiation due to the presence of SPIOs. Limbs were imaged on a 1.5-tesla clinical MRI scanner postmortem before and after injection to determine the extent of tendonitis and detect SPIO MSCs. Clusters of labeled cells were visible as signal voids in 6/6 subjects. Coalescing regions of signal void were diffusely present in the peritendinous tissues. Although previous reports have determined that local injury retains cells within a small radius of the site of injection, our study shows greater than expected delocalization and relatively few cells retained within collagenous tendon compared to surrounding fascia. Further work is needed if this is a reality in vivo and to determine if directed intralesional delivery of MSCs is as critical as presently thought

    Pathology in Practice

    No full text

    Porcine induced pluripotent stem cells produce chimeric offspring

    No full text
    Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2-to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology
    corecore