5 research outputs found

    Incidence of macrolide-lincosamide-streptogramin B resistance amongst beta-haemolytic streptococci in The Gambia.

    Get PDF
    BACKGROUND: In West Africa, penicillin, macrolide and lincosamide resistance among beta-haemolytic streptococci (BHS) isolates has rarely been described. However, such data are critical to detect and track the emergence of antibiotic resistance. METHODS: Beta-haemolytic streptococci were cultured from clinical specimens from patients attending the clinic at the Medical Research Council Unit The Gambia (n = 217) and kept at -70 °C. Of these, 186 were revived and tested for penicillin susceptibility by disc diffusion and E-test methods, and the D-test for determination of constitutive and inducible macrolide-lincosamide (MLSB) resistance phenotypes. RESULTS: The majority of BHS isolates from infections were group A streptococci (GAS) (126/186, 67.7%). Of these, 16% were from invasive disease (30/186). Other BHS isolated included lancefield groups B (19, 10.2%); C (9/186, 4.8%), D (3/186, 1.6%), F (5/186, 2.7%), G (16/186, 8.6%) and non-typeable (8/186, 4.3%). Prevalence of BHS isolated from blood cultures ranges from 0% (2005) to 0.5% (2010). Most (85, 45.7%) of the isolates were from wound infections. Of the 186 BHS isolates, none was resistant to penicillin and 14 (6.1%) were resistant to erythromycin. Of these, 8 (4.3%) demonstrated constitutive MLSB resistance, and 5 (2.7%) were inducible MLSB resistant. All the inducible MLSB isolates were GAS, and majority of the constitutive MLSB isolates (6/8, 75.0%) were non-GAS. CONCLUSIONS: Beta-haemolytic streptococci, predominantly GAS are associated with a wide range of infections in The Gambia. It is reassuring that macrolide and lincosamide resistance is relatively low. However, monitoring of MLSB resistance is necessary with the global spread of resistant BHS strains

    Flowering margins support natural enemies between cropping seasons

    Get PDF
    IntroductionPopulations of natural enemies of insect pests are declining owing to agricultural intensification and indiscriminate use of pesticides, and this may be exacerbated in agricultural systems that clear all margin plants after the cropping season for other uses such as fodder. Retaining a diversity of non-crop flowering vegetation outside the cropping season may support more resilient and effective natural pest regulation.MethodsWe tested the potential for non-crop vegetation to support natural enemies in fields across two locations after harvesting the primary crops of lablab and maize.ResultsA total of 54 plant species were recorded across the sites in Kenya with 59% of them being annuals and 41% perennials. There was a significant seasonal variation in plant species richness (ANOVA: F1, 16 = 33. 45; P< 0.0001) and diversity (ANOVA: F1, 16 = 7.20; P = 0.0511). While time since harvesting was a significant factor influencing the overall abundance of natural enemies (ANOVA: F2, 1,133 = 8.11; P< 0.0001), they were generally higher in abundance in locations with margin plants or where a diversity of margin plants was observed.DiscussionThese findings demonstrate that flowering plants in agricultural systems offer refuge and alternative food for natural enemies and potentially other beneficial insects between cropping seasons. The conservation of natural enemies between crops may lead to more effective natural pest regulation early in the following crop, thus reducing reliance on insecticides application

    Non-tuberculous Mycobacteria isolated from Pulmonary samples in sub-Saharan Africa - A Systematic Review and Meta Analyses

    Get PDF
    Abstract Pulmonary non-tuberculous mycobacterial (NTM) disease epidemiology in sub-Saharan Africa is not as well described as for pulmonary tuberculosis. Earlier reviews of global NTM epidemiology only included subject-level data from one sub-Saharan Africa country. We systematically reviewed the literature and searched PubMed, Embase, Popline, OVID and Africa Wide Information for articles on prevalence and clinical relevance of NTM detection in pulmonary samples in sub-Saharan Africa. We applied the American Thoracic Society/Infectious Disease Society of America criteria to differentiate between colonisation and disease. Only 37 articles from 373 citations met our inclusion criteria. The prevalence of pulmonary NTM colonization was 7.5% (95% CI: 7.2%–7.8%), and 75.0% (2325 of 3096) occurred in males, 16.5% (512 of 3096) in those previously treated for tuberculosis and Mycobacterium avium complex predominated (27.7% [95% CI: 27.2–28.9%]). In seven eligible studies, 27.9% (266 of 952) of participants had pulmonary NTM disease and M. kansasii with a prevalence of 69.2% [95% CI: 63.2–74.7%] was the most common cause of pulmonary NTM disease. NTM species were unidentifiable in 29.2% [2,623 of 8,980] of isolates. In conclusion, pulmonary NTM disease is a neglected and emerging public health disease and enhanced surveillance is required

    Intercropping and diverse field margin vegetation suppress bean aphid (Homoptera: Aphididae) infestation in dolichos ( Lablab purpureus L.).

    No full text
    Dolichos (Lablab purpureus L.) is a drought tolerant legume used as food/feed and im- provement of soil fertility. The production of dolichos in Kenya, Nakuru County is however limited by insect pests like bean aphids, pod borers and whiteflies. Field stud- ies were conducted to determine the effect of cropping systems (dolichos monocrop and maize-dolichos intercrop) and field margin vegetation on bean aphids and their natural enemies. The experiment was conducted in Njoro (high field margin vegetation) and Ron- gai (low field margin vegetation) during May–December 2019 and March−November 2020 cropping seasons. Bean aphid percent incidence, severity of damage and abundance was assessed at seedling, early vegetative, late vegetative and flowering dolichos growth stages. The populations of natural enemies in the plots and field margin vegetation were monitored using pan traps and sweep nets. Species diversity and composition of the field margin ve-getation was determined using a quadrat. Results showed that location and cropping system had significant effects on bean aphid infestations. A high bean aphid incidence (38.13%) was observed in Njoro compared to Rongai (31.10%). Dolichos monocrop had significantly higher bean aphid infestation (51.63%) than the maize-dolichos intercrop system (24.62%). A highly diverse Shannon-weaver index was observed in Rongai (1.90) compared to Njoro (1.67). Dolichos monocrop had a more diverse Shannon-weaver index (1.8) than the maize- dolichos intercrop system (1.7). Rongai had the most abundant annual and perennial field margin vegetation species. The field margin species richness and diversity were higher in Rongai (81%) than in Njoro (54%). The findings of this study have demonstrated that a maize-dolichos intercrop in Rongai can reduce bean aphid damage in dolichos
    corecore