122 research outputs found

    Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells.

    Get PDF
    During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells. Using mass spectrometry-based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin-modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell-cell adhesion are successive steps of the extra-embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time-resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes.This work was supported by the European Union 7th Framework Program (PRIME-XS project grant number 262067 to K.S.L., L.G and C.M.M), the Biotechnology and Biological Sciences Research Council (BBSRC grant number BB/L002817/1 to K.S.L and L.G.), as well as a HFSP grant (RGP0029/2010) and a European Research Council (ERC) Advanced Investigator grant to A.M.A.. C.S was supported by an EMBO long term fellowship and a Marie Curie IEF. L.T.Y.C. and K.K.N. were supported by the Medical Research Council (MRC, UK, MC_UP_1202/9) and the March of Dimes Foundation (FY11-436). We also thank Professor Steve Oliver and Dr. A.K.Hadjantonakis for helpful discussions and advice.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/stem.206

    Towards energetically viable asymmetric deprotonations : selectivity at more elevated temperatures with C2-symmetric magnesium bisamides

    Get PDF
    A novel chiral magnesium bisamide has enabled the development of effective asymmetric deprotonation protocols at substantially more elevated temperatures. This new, structurally simple, C2-symmetric magnesium complex displays excellent levels of asymmetric efficiency and energy reduction in the synthesis of enantioenriched enol silane

    Extended amygdala-parabrachial circuits alter threat assessment and regulate feeding

    Get PDF
    An animal\u27s evolutionary success depends on the ability to seek and consume foods while avoiding environmental threats. However, how evolutionarily conserved threat detection circuits modulate feeding is unknown. In mammals, feeding and threat assessment are strongly influenced by the parabrachial nucleus (PBN), a structure that responds to threats and inhibits feeding. Here, we report that the PBN receives dense inputs from two discrete neuronal populations in the bed nucleus of the stria terminalis (BNST), an extended amygdala structure that encodes affective information. Using a series of complementary approaches, we identify opposing BNST-PBN circuits that modulate neuropeptide-expressing PBN neurons to control feeding and affective states. These previously unrecognized neural circuits thus serve as potential nodes of neural circuitry critical for the integration of threat information with the intrinsic drive to feed

    Structural and Evolutionary Analyses Show Unique Stabilization Strategies in the Type IV Pili of Clostridium difficile

    Get PDF
    Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, biofilm formation, cellular adhesion and horizontal gene transfer. However, many Gram-positive species, including C. difficile, also produce Type IV pili. Here, we identify the major subunit of the Type IV pili of C. difficile, PilA1, and describe multiple three-dimensional structures of PilA1, demonstrating the diversity found in three strains of C. difficile. We also model the incorporation of both PilA1 and a minor pilin, PilJ, into the pilus fiber. Although PilA1 contains no cysteine residues, and therefore cannot form the disulfide bonds found in all Gram-negative Type IV pilins, it adopts unique strategies to achieve a typical pilin fold. The structures of PilA1 and PilJ exhibit similarities with the Type IVb pilins from Gram-negative bacteria that suggest that the Type IV pili of C. difficile are involved in microcolony formation

    Contrasting synergistic heterobimetallic (Na-Mg) and homometallic (Na or Mg) bases in metalation reactions of dialkylphenylphosphines and dialkylanilines : lateral vs ring selectivities

    Get PDF
    A series of dialkyl phenylphosphines and their analogous aniline substrates have been metallated with the synergistic mixedmetal base [(TMEDA)Na(TMP)(CH2SiMe3)Mg(TMP)] 1. Different metallation regioselectivities for the substrates were observed, with predominately lateral or meta-magnesiated products isolated from solution. Three novel heterobimetallic complexes [(TMEDA)Na(TMP)(CH2PCH3Ph)Mg(TMP)] 2, [(TMEDA)Na(TMP)(m- C6H4PiPr2)Mg(TMP)] 3 and [(TMEDA)Na(TMP)(m- C6H4NEt2)Mg(TMP)] 4 and two homometallic complexes [{(TMEDA)Na(EtNC6H5)}2] 5 and [(TMEDA)Na2(TMP)(C6H5PEt)]2 6 derived from homometallic metalation have been crystallographically characterised. Complex 6 is an unprecedented sodium-amide, sodium-phosphide hybrid with a rare (NaNNaP)2 ladder motif. These products reveal contrasting heterobimetallic deprotonation with homometallic induced ethene elimination reactivity. Solution studies of metallation mixtures and electrophilic iodine quenching reactions confirmed the metallation sites. In an attempt to rationalise the regioselectivity of the magnesiation reactions the C-H acidities of the six substrates were determined in THF solution using DFT calculations employing the M06-2X functional and cc-pVTZ Dunning’s basis set
    • …
    corecore