392 research outputs found

    Meteorology and Cimatology: On-Line Weather Studies

    Get PDF
    Through the Virginia Earth Science Collaborative (VESC), a partnership of nine institutes of higher education, non-profit organizations, and eighty-three school divisions, a 3-credit, graduate-level meteorology course was offered six times between Spring 2006 and Fall 2007. The course, entitled Meteorology, was offered at three locations (Richmond, Abingdon, and Harrisonburg), and a local instructor facilitated each section. Funding for the course development, instructor stipends, and participant expenses (including travel, meals, and tuition) was provided through a competitive Mathematics and Science Partnership (MSP) grant funded through the federal No Child Left Behind legislation of 2001. The framework of the course was the American Meteorological Society\u27s Online Weather Studies program, which provides meteorological content and laboratory investigations, and relies heavily on the use of Internet-accessed, real-time weather data to teach meteorological topics in a distance learning format. The 115 teacher participants were required to complete text readings and written assignments, conduct laboratory investigations, design projects using real—time meteorological data, complete exams, and attend three face-to-face meetings. For the purpose of the VESC grant evaluation, pre-test and post-test data were collected on 110 of the participants which indicated an average 14.7% increase in participants‘ content knowledge and use of real-time meteorological products (weather maps, satellite images, station models, etc.) in their instructional delivery

    The length dependence of the series elasticity of pig bladder smooth muscle

    Get PDF
    Strips of urinary bladder smooth muscle were subjected to a series of quick release measurements. Each measurement consisted of several releases and resets to the original length, made during one contraction. The complete length-force characteristic of series elasticity was quantified by estimating H, the amplitude of quick release necessary to reduce the active force to exactly zero, and Db, a measure for the deviation of the characteristic from a straight line. By measuring a series of contractions at increasing stretched strip lengths, the length dependence of these parameters was studied. It was found that H depends linearly on stretched strip length. On average H/length amounted to 0.04. Db decreased when strips were stretched, i.e. a straight line was more closely approximated. Both parameter dependencies support the concept of two separate elastic mechanisms, a linear true passive elasticity in series with a non-linear elasticity in the cross-bridges. For the latter, H amounts to 3.8% of the initial strip length

    BioJS: An open source standard for biological visualisation - its status in 2014

    Get PDF
    BioJS is a community-based standard and repository of functional components to represent biological information on the web. The development of BioJS has been prompted by the growing need for bioinformatics visualisation tools to be easily shared, reused and discovered. Its modular architecture makes it easy for users to find a specific functionality without needing to know how it has been built, while components can be extended or created for implementing new functionality. The BioJS community of developers currently provides a range of functionality that is open access and freely available. A registry has been set up that categorises and provides installation instructions and testing facilities at http://www.ebi.ac.uk/tools/biojs/. The source code for all components is available for ready use at https://github.com/biojs/biojs

    Chronic social stress increases nitric oxide-dependent vasorelaxation in normotensive rats

    Get PDF
    The aim of this study was to examine oxidative load and endothelium-dependent vasorelaxation in the serotonin pre-constricted femoral artery (FA) of Wistar-Kyoto (WKY) rats exposed to chronic social stress produced by crowding in the presence or absence of ascorbic acid (AsA) in working solution. Adult male rats were randomly divided into control (living space: 480 cm2/rat) or stressed (living space: 200 cm2/rat) groups for 8 weeks. Blood pressure and heart rate, determined using tail-cuff plethysmography, were not influenced by stress vs. control. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured in the left ventricle and liver (for assessment of oxidative load) and were found unchanged by chronic crowding. The nitric oxide (NO)-dependent component of endothelium-dependent relaxation was investigated in the FA using a wire myograph. In both the presence and absence of AsA, acetylcholine-induced relaxation of the FA of stressed rats significantly exceeded that of the controls, which was associated with an increase of the NO-dependent component. In conclusion, the data showed that chronic crowding did not produce oxidative stress in the organs investigated and indicate that elevation of NO production during chronic stress is an important way of adaptation, which may prevent normotensive rats from the development of stress-induced hypertension

    Inhibition of PKC activity blocks the increase of ET(B )receptor expression in cerebral arteries

    Get PDF
    BACKGROUND: Previous studies have shown that there is a time-dependent upregulation of contractile endothelin B (ET(B)) receptors in middle cerebral arteries (MCA) after organ culture. This upregulation is dependent on mitogen-activated protein kinases and possibly protein kinase C (PKC). The aim of this study was to examine the effect of PKC inhibitors with different profiles on the upregulation of contractile ET(B )receptors in rat MCA. Artery segments were incubated for 24 hours at 37°C. To investigate involvement of PKC, inhibitors were added to the medium before incubation. The contractile endothelin-mediated responses were measured and real-time PCR was used to detect endothelin receptor mRNA levels. Furthermore, immunohistochemistry was used to demonstrate the ET(B )receptor protein distribution in the MCA and Western blot to measure which of the PKC subtypes that were affected by the inhibitors. RESULTS: The PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and PKC inhibitor 20–28 attenuated the ET(B )receptor mediated contractions. Furthermore, Ro-32-0432 and bisindolylmaleimide I decreased ET(B )receptor mRNA levels while PKC inhibitor 20–28 reduced the amount of receptor protein on smooth muscle cells. PKC inhibitor 20–28 also decreased the protein levels of the five PKC subtypes studied (α, βI, γ, δ and ε). CONCLUSION: The results show that PKC inhibitors are able to decrease the ET(B )receptor contraction and expression in MCA smooth muscle cells following organ culture. The PKC inhibitor 20–28 affects the protein levels, while Ro-32-0432 and bisindolylmaleimide I affect the mRNA levels, suggesting differences in activity profile. Since ET(B )receptor upregulation is seen in cerebral ischemia, the results of the present study provide a way to interfere with the vascular involvement in cerebral ischemia

    Protein kinase C inhibition attenuates vascular ET(B )receptor upregulation and decreases brain damage after cerebral ischemia in rat

    Get PDF
    BACKGROUND: Protein kinase C (PKC) is known to be involved in the pathophysiology of experimental cerebral ischemia. We have previously shown that after transient middle cerebral artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral artery occlusion in rat. RESULTS: At 24 hours after transient middle cerebral artery occlusion (MCAO), the contractile endothelin B receptor mediated response and the endothelin B receptor protein expression were upregulated in the ipsilateral but not the contralateral middle cerebral artery. In Ro-32-0432 treated rats, the upregulated endothelin receptor response was attenuated. Furthermore, Ro-32-0432 treatment decreased the ischemic brain damage significantly and improved neurological scores. Immunohistochemistry showed fainter staining of endothelin B receptor protein in the smooth muscle cells of the ipsilateral middle cerebral artery of Ro-32-0432 treated rats compared to control. CONCLUSION: The results suggest that treatment with Ro-32-0432 in ischemic stroke decreases the ischemic infarction area, neurological symptoms and associated endothelin B receptor upregulation. This provides a new perspective on possible mechanisms of actions of PKC inhibition in cerebral ischemia

    Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral ischemia results in a rapid increase in contractile cerebrovascular receptors, such as the 5-hydroxytryptamine type 1B (5-HT<sub>1B</sub>), angiotensin II type 1 (AT<sub>1</sub>), and endothelin type B (ET<sub>B</sub>) receptors, in the vessel walls within the ischemic region, which further impairs local blood flow and aggravates tissue damage. This receptor upregulation occurs via activation of the mitogen-activated protein kinase pathway. We therefore hypothesized an important role for B-Raf, the first signaling molecule in the pathway. To test our hypothesis, human cerebral arteries were incubated at 37°C for 48 h in the absence or presence of a B-Raf inhibitor: SB-386023 or SB-590885. Contractile properties were evaluated in a myograph and protein expression of the individual receptors and activated phosphorylated B-Raf (p-B-Raf) was evaluated immunohistochemically.</p> <p>Results</p> <p>5-HT<sub>1B</sub>, AT<sub>1</sub>, and ET<sub>B </sub>receptor-mediated contractions were significantly reduced by application of SB-590885, and to a smaller extent by SB-386023. A marked reduction in AT<sub>1 </sub>receptor immunoreactivity was observed after treatment with SB-590885. Treatment with SB-590885 and SB-386023 diminished the culture-induced increase of p-B-Raf immunoreactivity.</p> <p>Conclusions</p> <p>B-Raf signaling has a key function in the altered expression of vascular contractile receptors observed after organ culture. Therefore, specific targeting of B-Raf might be a novel approach to reduce tissue damage after cerebral ischemia by preventing the previously observed upregulation of contractile receptors in smooth muscle cells.</p

    Eosinophils are key regulators of perivascular adipose tissue and vascular functionality

    Get PDF
    Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed β3 adrenoceptors by catecholamines, and identified eosinophils as a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the regulation of normal PVAT anti-contractile function

    Impaired flow-induced arterial remodeling in DOCA-salt hypertensive rats

    Get PDF
    Arteries from young healthy animals respond to chronic changes in blood flow and blood pressure by structural remodeling. We tested whether the ability to respond to decreased (-90%) or increased (+100%) blood flow is impaired during the development of deoxycorticosterone acetate (DOCA)-salt hypertension in rats, a model for an upregulated endothelin-1 system. Mesenteric small arteries (MrA) were exposed to low blood flow (LF) or high blood flow (HF) for 4 or 7 weeks. The bioavailability of vasoactive peptides was modified by chronic treatment of the rats with the dual neutral endopeptidase (NEP)/endothelin-converting enzyme (ECE) inhibitor SOL1. After 3 or 6 weeks of hypertension, the MrA showed hypertrophic arterial remodeling (3 weeks: media cross-sectional area (mCSA): 10 +/- 1 x 10(3) to 17 +/- 2 x 10(3) mu m(2); 6 weeks: 13 +/- 2 x 10(3) to 24 +/- 3 x 10(3) mu m(2)). After 3, but not 6, weeks of hypertension, the arterial diameter was increased (empty set: 385 +/- 13 to 463 +/- 14 mu m). SOL1 reduced hypertrophy after 3 weeks of hypertension (mCSA: 6 x 10(3) +/- 1 x 10(3) mu m(2)). The diameter of the HF arteries of normotensive rats increased (empty set: 463 +/- 22 mu m) but no expansion occurred in the HF arteries of hypertensive rats (empty set: 471 +/- 16 mu m). MrA from SOL1-treated hypertensive rats did show a significant diameter increase (empty set: 419 +/- 13 to 475 +/- 16 mu m). Arteries exposed to LF showed inward remodeling in normotensive and hypertensive rats (mean empty set between 235 and 290 mu m), and infiltration of monocyte/ macrophages. SOL1 treatment did not affect the arterial diameter of LF arteries but reduced the infiltration of monocyte/ macrophages. We show for the first time that flow-induced remodeling is impaired during the development of DOCA-salt hypertension and that this can be prevented by chronic NEP/ECE inhibition. Hypertension Research (2012) 35, 1093-1101; doi:10.1038/hr.2012.94; published online 12 July 201

    Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Late cerebral ischemia carries high morbidity and mortality after subarachnoid hemorrhage (SAH) due to reduced cerebral blood flow (CBF) and the subsequent cerebral ischemia which is associated with upregulation of contractile receptors in the vascular smooth muscle cells (SMC) via activation of mitogen-activated protein kinase (MAPK) of the extracellular signal-regulated kinase (ERK)1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide a therapeutic window for treatment of cerebral ischemia after SAH.</p> <p>Results</p> <p>Here we demonstrate that SAH increases the phosphorylation level of ERK1/2 in cerebral vessels and reduces the neurology score in rats in additional with the CBF measured by an autoradiographic method. The intracisternal administration of SB-386023-b, a specific inhibitor of raf, given 6 h after SAH, aborts the receptor changes and protects the brain from the development of late cerebral ischemia at 48 h. This is accompanied by reduced phosphorylation of ERK1/2 in cerebrovascular SMC. SAH per se enhances contractile responses to endothelin-1 (ET-1), 5-carboxamidotryptamine (5-CT) and angiotensin II (Ang II), upregulates ET<sub>B</sub>, 5-HT<sub>1B </sub>and AT<sub>1 </sub>receptor mRNA and protein levels. Treatment with SB-386023-b given as late as at 6 h but not at 12 h after the SAH significantly decreased the receptor upregulation, the reduction in CBF and the neurology score.</p> <p>Conclusion</p> <p>These results provide evidence for a role of the ERK1/2 pathway in regulation of expression of cerebrovascular SMC receptors. It is suggested that raf inhibition may reduce late cerebral ischemia after SAH and provides a realistic time window for therapy.</p
    • …
    corecore