117 research outputs found

    Cosmological significance of one-loop effective gravity

    Full text link
    We study the one-loop effective action for gravity in a cosmological setup to determine possible cosmological effects of quantum corrections to Einstein theory. By considering the effect of the universal non-local terms in a toy model, we show that they can play an important role in the very early universe. We find that during inflation, the non-local terms are significant, leading to deviations from the standard inflationary expansion.Comment: 8 pages (REVTeX

    Stability of the Einstein static universe in f(R) gravity

    Full text link
    We analyze the stability of the Einstein static universe by considering homogeneous scalar perturbations in the context of f(R) modified theories of gravity. By considering specific forms of f(R), the stability regions of the solutions are parameterized by a linear equation of state parameter w=p/rho. Contrary to classical general relativity, it is found that in f(R) gravity a stable Einstein cosmos with a positive cosmological constant does indeed exist. Thus, we are lead to conclude that, in principle, modifications in f(R) gravity stabilize solutions which are unstable in general relativity.Comment: 7 pages, 2 figures, 2 tables; references adde

    Universality in a Class of Q-Ball Solutions: An Analytic Approach

    Full text link
    The properties of Q-balls in the general case of a sixth order potential have been studied using analytic methods. In particular, for a given potential, the initial field value that leads to the soliton solution has been derived and the corresponding energy and charge have been explicitly evaluated. The proposed scheme is found to work reasonably well for all allowed values of the model parameters.Comment: 9 Pages, 6 Figure

    Spherically symmetric vacuum solutions of modified gravity theory in higher dimensions

    Full text link
    In this paper we investigate spherically symmetric vacuum solutions of f(R)f(R) gravity in a higher dimensional spacetime. With this objective we construct a system of non-linear differential equations, whose solutions depend on the explicit form assumed for the function F(R)=df(R)dRF(R)=\frac{df(R)}{dR}. We explicit show that for specific classes of this function exact solutions from the field equations are obtained; also we find approximated results for the metric tensor for more general cases admitting F(R)F(R) close to the unity.Comment: 14 pages, no figure. New version accepted for publication in EPJ

    Constraining Newtonian stellar configurations in f(R) theories of gravity

    Full text link
    We consider general metric f(R)f(R) theories of gravity by solving the field equations in the presence of a spherical static mass distribution by analytical perturbative means. Expanding the field equations systematically in \cO(G), we solve the resulting set of equations and show that f(R)f(R) theories which attempt to solve the dark energy problem very generally lead to γPPN=1/2\gamma_{PPN}=1/2 in the solar system. This excludes a large class of theories as possible explanations of dark energy. We also present the first order correction to γPPN\gamma_{PPN} and show that it cannot have a significant effect.Comment: 4 pages; v2: added references, modified abstract and introduction, conclusions unchange

    Velocity and Heat Flow in a Composite Two Fluid System

    Full text link
    We describe the stress energy of a fluid with two unequal stresses and heat flow in terms of two perfect fluid components. The description is in terms of the fluid velocity overlap of the components, and makes no assumptions about the equations of state of the perfect fluids. The description is applied to the metrics of a conformally flat system and a black string.Comment: typos correcte
    corecore