3 research outputs found
Chronic Nicotine Exposure Induces Murine Aortic Remodeling and Stiffness Segmentation—Implications for Abdominal Aortic Aneurysm Susceptibility
Aim: Arterial stiffness is a significant risk factor for many cardiovascular diseases, including abdominal aortic aneurysms (AAA). Nicotine, the major active ingredient of e-cigarettes and tobacco smoke, induces acute vasomotor effects that may temporarily increase arterial stiffness. Here, we investigated the effects of long-term nicotine exposure on structural aortic stiffness.Methods: Mice (C57BL/6) were infused with nicotine for 40 days (20 mg/kg/day). Arterial stiffness of the thoracic (TS) and abdominal (AS) aortic segments was analyzed using ultrasound (PWV, pulse wave velocity) and ex vivo pressure myograph measurements. For mechanistic studies, aortic matrix-metalloproteinase (MMP) expression and activity as well as medial elastin architecture were analyzed.Results: Global aortic stiffness increased with nicotine. In particular, local stiffening of the abdominal segment occurred after 10 days, while thoracic aortic stiffness was only increased after 40 days, resulting in aortic stiffness segmentation. Mechanistically, nicotine exposure enhanced expression of MMP-2/-9 and elastolytic activity in both aortic segments. Elastin degradation occurred in both segments; however, basal elastin levels were higher in the thoracic aorta. Finally, MMP-inhibition significantly reduced nicotine-induced MMP activity, elastin destruction, and aortic stiffening.Conclusion: Chronic nicotine exposure induces aortic MMP expression and structural aortic damage (elastin fragmentation), irreversibly increasing aortic stiffness. This process predominantly affects the abdominal aortic segment, presumably due in part to a lower basal elastin content. This novel phenomenon may help to explain the role of nicotine as a major risk factor for AAA formation and has health implications for ECIGs and other modes of nicotine delivery
Chronic Nicotine Exposure Induces Murine Aortic Remodeling and Stiffness Segmentation - Implications for Abdominal Aortic Aneurysm Susceptibility
Aim: Arterial stiffness is a significant risk factor for many cardiovascular diseases, including abdominal aortic aneurysms (AAA). Nicotine, the major active ingredient of e-cigarettes and tobacco smoke, induces acute vasomotor effects that may temporarily increase arterial stiffness. Here, we investigated the effects of long-term nicotine exposure on structural aortic stiffness. Methods: Mice (C57BL/6) were infused with nicotine for 40 days (20 mg/kg/day). Arterial stiffness of the thoracic (TS) and abdominal (AS) aortic segments was analyzed using ultrasound (PVVV, pulse wave velocity) and ex vivo pressure myograph measurements. For mechanistic studies, aortic matrix-metalloproteinase (MMP) expression and activity as well as medial elastin architecture were analyzed. Results: Global aortic stiffness increased with nicotine. In particular, local stiffening of the abdominal segment occurred after 10 days, while thoracic aortic stiffness was only increased after 40 days, resulting in aortic stiffness segmentation. Mechanistically, nicotine exposure enhanced expression of MMP-2/-9 and elastolytic activity in both aortic segments. Elastin degradation occurred in both segments;however, basal elastin levels were higher in the thoracic aorta. Finally, MMP-inhibition significantly reduced nicotine-induced MMP activity, elastin destruction, and aortic stiffening. Conclusion: Chronic nicotine exposure induces aortic MMP expression and structural aortic damage (elastin fragmentation), irreversibly increasing aortic stiffness. This process predominantly affects the abdominal aortic segment, presumably due in part to a lower basal elastin content. This novel phenomenon may help to explain the role of nicotine as a major risk factor for AM formation and has health implications for ECIGs and other modes of nicotine delivery
E-cigarette exposure augments murine abdominal aortic aneurysm development: role of Chil1
Aims Abdominal aortic aneurysm (AAA) is a common cardiovascular disease with a strong correlation to smoking, although underlying mechanisms have been minimally explored. Electronic cigarettes (e-cigs) have gained recent broad popularity and can deliver nicotine at comparable levels to tobacco cigarettes, but effects on AAA development are unknown. Methods and results We evaluated the impact of daily e-cig vaping with nicotine on AAA using two complementary murine models and found that exposure enhanced aneurysm development in both models and genders. E-cigs induced changes in key mediators of AAA development including cytokine chitinase-3-like protein 1 (CHI3L1/Chil1) and its targeting microRNA-24 (miR-24). We show that nicotine triggers inflammatory signalling and reactive oxygen species while modulating miR-24 and CHI3L1/Chil1 in vitro and that Chill is crucial to e-cig-augmented aneurysm formation using a knockout model. Conclusions In conclusion our work shows increased aneurysm formation along with augmented vascular inflammation in response to e-cig exposure with nicotine. Further, we identify Chill as a key mediator in this context. Our data raise concerns regarding the potentially harmful long-term effects of e-cig nicotine vaping. [GRAPHICS]