4,207 research outputs found
Amplitude control of quantum interference
Usually, the oscillations of interference effects are controlled by relative
phases. We show that varying the amplitudes of quantum waves, for instance by
changing the reflectivity of beam splitters, can also lead to quantum
oscillations and even to Bell violations of local realism. We first study
theoretically a generalization of the Hong-Ou-Mandel experiment to arbitrary
source numbers and beam splitter transmittivity. We then consider a Bell type
experiment with two independent sources, and find strong violations of local
realism for arbitrarily large source number ; for small , one operator
measures essentially the relative phase of the sources and the other their
intensities. Since, experimentally, one can measure the parity of the number of
atoms in an optical lattice more easily than the number itself, we assume that
the detectors measure parity.Comment: 4 pages; 4 figure
Technology as an economic catalyst in rural and depressed places in Massachusetts
This paper uses case studies, including two cities (Lynn and New Bedford), a sub-city district (Roxbury) and two towns in rural Franklin County (Greenfield and Orange), to examine the role of technology as a potential economic catalyst in rural and depressed places in Massachusetts. Though the five target areas vary in size, density, geographic area, demographic characteristics and economic resources, each exhibits chronic patterns of economic distress related to the decline of manufacturing, construction and other key industries
Absence of Fragmentation in Two-Dimensional Bose-Einstein Condensation
We investigate the possibility that the BEC-like phenomena recently detected
on two-dimensional finite trapped systems consist of fragmented condensates. We
derive and diagonalize the one-body density matrix of a two-dimensional
isotropically trapped Bose gas at finite temperature. For the ideal gas, the
procedure reproduces the exact harmonic-oscillator eigenfunctions and the Bose
distribution. We use a new collocation-minimization method to study the
interacting gas in the Hartree-Fock approximation and obtain a ground-state
wavefunction and condensate fraction consistent with those obtained by other
methods. The populations of the next few eigenstates increase at the expense of
the ground state but continue to be negligible; this supports the conclusion
that two-dimensional BEC is into a single state.Comment: 6 pages, 1 figur
The origin of phase in the interference of Bose-Einstein condensates
We consider the interference of two overlapping ideal Bose-Einstein
condensates. The usual description of this phenomenon involves the introduction
of a so-called condensate wave functions having a definite phase. We
investigate the origin of this phase and the theoretical basis of treating
interference. It is possible to construct a phase state, for which the particle
number is uncertain, but phase is known. However, how one would prepare such a
state before an experiment is not obvious. We show that a phase can also arise
from experiments using condensates in Fock states, that is, having known
particle numbers. Analysis of measurements in such states also gives us a
prescription for preparing phase states. The connection of this procedure to
questions of ``spontaneously broken gauge symmetry'' and to ``hidden
variables'' is mentioned.Comment: 22 pages 4 figure
Exclusion Statistics in a two-dimensional trapped Bose gas
We briefly explain the notion of exclusion statistics and in particular
discuss the concept of an ideal exclusion statistics gas. We then review a
recent work where it is demonstrated that a {\em two-dimensional} Bose gas with
repulsive delta function interactions obeys ideal exclusion statistics, with a
fractional parameter related to the interaction strength.Comment: 10 pages, RevTeX. Proceedings of the Salerno workshop "Theory of
Quantum Gases and Quantum Coherence", to appear in a special issue of J.Phys.
B, Dec. 200
What Do Cognitive Networks Do? Simulations of Spoken Word Recognition Using the Cognitive Network Science Approach
Cognitive network science is an emerging approach that uses the mathematical tools of network science to map the relationships among representations stored in memory to examine how that structure might influence processing. In the present study, we used computer simulations to compare the ability of a well-known model of spoken word recognition, TRACE, to the ability of a cognitive network model with a spreading activation-like process to account for the findings from several previously published behavioral studies of language processing. In all four simulations, the TRACE model failed to retrieve a sufficient number of words to assess if it could replicate the behavioral findings. The cognitive network model successfully replicated the behavioral findings in Simulations 1 and 2. However, in Simulation 3a, the cognitive network did not replicate the behavioral findings, perhaps because an additional mechanism was not implemented in the model. However, in Simulation 3b, when the decay parameter in spreadr was manipulated to model this mechanism the cognitive network model successfully replicated the behavioral findings. The results suggest that models of cognition need to take into account the multi-scale structure that exists among representations in memory, and how that structure can influence processing
Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence
Multicellular spheroids are an established system for three-dimensional cell culture. Spheroids are typically generated
using hanging drop or non-adherent culture; however, an emerging technique is to use magnetic levitation. Herein,
mesenchymal stem cell spheroids were generated using magnetic nanoparticles and subsequently cultured within a type
I collagen gel, with a view towards developing a bone marrow niche environment. Cells were loaded with magnetic
nanoparticles, and suspended beneath an external magnet, inducing self-assembly of multicellular spheroids. Cells in
spheroids were viable and compared to corresponding monolayer controls, maintained stem cell phenotype and were
quiescent. Interestingly, core spheroid necrosis was not observed, even with increasing spheroid size, in contrast to
other commonly used spheroid systems. This mesenchymal stem cell spheroid culture presents a potential platform for
modelling in vitro bone marrow stem cell niches, elucidating interactions between cells, as well as a useful model for
drug delivery studies
Anisotropic Spin Diffusion in Trapped Boltzmann Gases
Recent experiments in a mixture of two hyperfine states of trapped Bose gases
show behavior analogous to a spin-1/2 system, including transverse spin waves
and other familiar Leggett-Rice-type effects. We have derived the kinetic
equations applicable to these systems, including the spin dependence of
interparticle interactions in the collision integral, and have solved for
spin-wave frequencies and longitudinal and transverse diffusion constants in
the Boltzmann limit. We find that, while the transverse and longitudinal
collision times for trapped Fermi gases are identical, the Bose gas shows
diffusion anisotropy. Moreover, the lack of spin isotropy in the interactions
leads to the non-conservation of transverse spin, which in turn has novel
effects on the hydrodynamic modes.Comment: 10 pages, 4 figures; submitted to PR
Giant viscosity enhancement in a spin-polarized Fermi liquid
The viscosity is measured for a Fermi liquid, a dilute He-He mixture,
under extremely high magnetic field/temperature conditions ( T, mK). The spin splitting energy is substantially greater than
the Fermi energy ; as a consequence the polarization tends to unity
and s-wave quasiparticle scattering is suppressed for . Using a
novel composite vibrating-wire viscometer an enhancement of the viscosity is
observed by a factor of more than 500 over its low-field value. Good agreement
is found between the measured viscosity and theoretical predictions based upon
a -matrix formalism.Comment: 4 pages, 4 figure
Nonlocal appearance of a macroscopic angular momentum
We discuss a type of measurement in which a macroscopically large angular
momentum (spin) is "created" nonlocally by the measurement of just a few atoms
from a double Fock state. This procedure apparently leads to a blatant
nonconservation of a macroscopic variable - the local angular momentum. We
argue that while this gedankenexperiment provides a striking illustration of
several counter-intuitive features of quantum mechanics, it does not imply a
non-local violation of the conservation of angular momentum.Comment: 10 pages, 1 figur
- …