68 research outputs found

    Genetically complex epilepsies, copy number variants and syndrome constellations

    Get PDF
    Epilepsy is one of the most common neurological disorders, with a prevalence of 1% and lifetime incidence of 3%. There are numerous epilepsy syndromes, most of which are considered to be genetic epilepsies. Despite the discovery of more than 20 genes for epilepsy to date, much of the genetic contribution to epilepsy is not yet known. Copy number variants have been established as an important source of mutation in other complex brain disorders, including intellectual disability, autism and schizophrenia. Recent advances in technology now facilitate genome-wide searches for copy number variants and are beginning to be applied to epilepsy. Here, we discuss what is currently known about the contribution of copy number variants to epilepsy, and how that knowledge is redefining classification of clinical and genetic syndromes

    Chipping away at the common epilepsies with complex genetics: the 15q13.3 microdeletion shows the way

    Get PDF
    The idiopathic epilepsies are genetically heterogeneous with more than 50 clinical classifications. They are characterized by episodic seizures arising from erratic neuronal discharge in susceptible individuals. The most common predisposing genetic cause is the recently discovered chromosome 15q13.3 microdeletion. Other disorders previously attributed to the same lesion include autism, intellectual disability and schizophrenia. This phenotypic spectrum is most easily imagined as a contiguous gene syndrome with idiopathic generalized epilepsy as the most common clinical manifestation. Expressivity of the microdeletion in carriers is too variable for antenatal prediction of phenotype to be possible; however, when it is detected in living affected cases, it can be taken as the major predisposing cause for the observed phenotype. The discovery of this small 15q13.3 lesion barely scratches the surface that conceals what we ultimately need to know about the molecular genetic mechanisms behind the common epilepsies with complex genetics, but it provides valuable insight into how to proceed toward that goal

    Detection of microchromosomal aberrations in refractory epilepsy: a pilot study

    Get PDF
    ABSTRACT -Seizures often occur in patients with microchromosomal aberrations responsible for moderate to severe intellectual disability. We hypothesised that epilepsy alone could be caused by microdeletions or microduplications, which might also relate to epilepsy refractory to medication. Chromosomes from 20 subjects with epilepsy and repeated failure of antiepileptic medication were examined using molecular methods. Firstly, the 41 subtelomeric regions were scanned using fluorescence in situ hybridization and multiplex ligationdependent probe amplification. Secondly, a genome-wide scan was carried out using oligonucleotide-array comparative genome hybridisation on two platforms: Nimblegen and Agilent. Two aberrations (2/20) were identified: a recurrent microdeletion at 15q13.3 previously characterised in patients with seizures that generally respond to medication, and a novel 1.15 Mb microchromosomal duplication at 10q21.2 also present in the unaffected mother. We conclude that gene content of microchromosomal aberrations is not a major cause of refractory seizures, but that microchromosomal anomalies are found in an appreciable fraction of such cases

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Epilepsy and mental retardation limited to females: an under-recognized disorder

    Get PDF
    Epilepsy and Mental Retardation limited to Females (EFMR) which links to Xq22 has been reported in only one family. We aimed to determine if there was a distinctive phenotype that would enhance recognition of this disorder.We ascertained four unrelated families (two Australian, two Israeli) where seizures in females were transmitted through carrier males. Detailed clinical assessment was performed on 58 individuals, using a validated seizure questionnaire, neurological examination and review of EEG and imaging studies. Gene localization was examined using Xq22 microsatellite markers. Twenty-seven affected females had a mean seizure onset of 14 months (range 6^36) typically presenting with convulsions. All had convulsive attacks at some stage, associated with fever in 17 out of 27 (63%). Multiple seizure types occurred including tonic-clonic (26), tonic (4), partial (11), absence (5), atonic (3) and myoclonic (4). Seizures ceased at mean 12 years. Developmental progress varied from normal (7), to always delayed (4) to normal followed by regression (12). Intellect ranged from normal to severe intellectual disability (ID), with 67% of females having ID or being of borderline intellect. Autistic (6), obsessive (9) and aggressive (7) features were prominent. EEGs showed generalized and focal epileptiform abnormalities. Five obligate male carriers had obsessional tendencies. Linkage to Xq22 was confirmed (maximum lod 3.5 at h = 0).We conclude that EFMR is a distinctive, under-recognized familial syndrome where girls present with convulsions in infancy, often associated with intellectual impairment and autistic features. The unique inheritance pattern with transmission by males is perplexing. Clinical recognition is straightforward in multiplex families due to the unique inheritance pattern; however, this disorder should be considered in smaller families where females alone have seizures beginning in infancy, particularly in the setting of developmental delay. In single cases, diagnosis will depend on identification of the molecular basis. Keywords: epilepsy; intellectual disability; females; X-linked inheritance; autistic features Abbreviations: BAC = bacterial artificial chromosome; CFNS = craniofrontonasal syndrome; EFMR = epilepsy and mental retardation limited to females; ID = intellectual disability

    Characterization of greater middle eastern genetic variation for enhanced disease gene discovery

    Get PDF
    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics

    Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets

    Get PDF
    This study was supported by The Royal Society Research Grant RG130789 awarded to HD, as well as by a University of Aberdeen Centre for Genome-Enabled Biology and Medicine PhD studentship and Marine Alliance for Science and Technology for Scotland (MASTS) research grant SG363 awarded to AKR.Peer reviewedPublisher PD
    • 

    corecore