184 research outputs found

    The genome sequence of the lesser worm flesh fly, Sarcophaga (Sarcophaga) subvicina

    Get PDF
    We present a genome assembly from an individual male Sarcophaga subvicina (the lesser worm flesh fly; Arthropoda; Insecta; Diptera; Sarcophagidae). The genome sequence is 71 megabases in span. Most of the assembly (95.91%) is scaffolded into six chromosomal pseudomolecules, with the X sex chromosome assembled. The mitochondrial genome has also been assembled and is 16.7 kilobases in length. Gene annotation of this assembly on Ensembl identified 16,793 protein coding genes

    The genome of Roselle's flesh fly Sarcophaga (Helicophagella) rosellei (Böttcher, 1912)

    Get PDF
    We present a genome assembly from an individual male Sarcophaga rosellei (Roselle's flesh fly; Arthropoda; Insecta; Diptera; Sarcophagidae). The genome sequence is 541 megabases in span. Most of the assembly is scaffolded into six chromosomal pseudomolecules, with the X sex chromosome assembled. The mitochondrial genome has also been assembled and is 19.5 kilobases in length. Gene annotation of this assembly on Ensembl has identified 15,437 protein coding genes

    Chipping away at the common epilepsies with complex genetics: the 15q13.3 microdeletion shows the way

    Get PDF
    The idiopathic epilepsies are genetically heterogeneous with more than 50 clinical classifications. They are characterized by episodic seizures arising from erratic neuronal discharge in susceptible individuals. The most common predisposing genetic cause is the recently discovered chromosome 15q13.3 microdeletion. Other disorders previously attributed to the same lesion include autism, intellectual disability and schizophrenia. This phenotypic spectrum is most easily imagined as a contiguous gene syndrome with idiopathic generalized epilepsy as the most common clinical manifestation. Expressivity of the microdeletion in carriers is too variable for antenatal prediction of phenotype to be possible; however, when it is detected in living affected cases, it can be taken as the major predisposing cause for the observed phenotype. The discovery of this small 15q13.3 lesion barely scratches the surface that conceals what we ultimately need to know about the molecular genetic mechanisms behind the common epilepsies with complex genetics, but it provides valuable insight into how to proceed toward that goal
    corecore