16,510 research outputs found

    Electro-osmosis on anisotropic super-hydrophobic surfaces

    Full text link
    We give a general theoretical description of electro-osmotic flow at striped super-hydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In case of uncharged liquid-gas interface, the flow is the same or inhibited relative to flow in homogeneous channel with zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests a possibility of huge electro-osmotic slip even for electro-neutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic mixing devices. These results provide a framework for the rational design of super-hydrophobic surfaces.Comment: 4 pages, 4 figures; submitted to PRL Revised version: several references added, typos corrected. Supplementary file was restructured, the second part of the original EPAPS was removed and is supposed to be published as a separate pape

    Aharanov-Bohm excitons at elevated temperatures in type-II ZnTe/ZnSe quantum dots

    Full text link
    Optical emission from type-II ZnTe/ZnSe quantum dots demonstrates large and persistent oscillations in both the peak energy and intensity indicating the formation of coherently rotating states. Furthermore, the Aharanov-Bohm (AB) effect is shown to be remarkably robust and persists until 180K. This is at least one order of magnitude greater than the typical temperatures in lithographically defined rings. To our knowledge this is the highest temperature at which the AB effect has been observed in semiconductor structures

    On the effect of variable identification on the essential arity of functions

    Get PDF
    We show that every function of several variables on a finite set of k elements with n>k essential variables has a variable identification minor with at least n-k essential variables. This is a generalization of a theorem of Salomaa on the essential variables of Boolean functions. We also strengthen Salomaa's theorem by characterizing all the Boolean functions f having a variable identification minor that has just one essential variable less than f.Comment: 10 page

    Elastic anomalies in HoNi2B2C single crystals

    Full text link
    We have measured temperature and magnetic field dependencies of the sound velocities and the sound attenuation in HoNi2B2C single crystals. The main result is a huge softening the velocity of C66 mode due to a cooperative Jahn-Teller effect, resulting in a tetragonal-orthorhombic structural phase transition. Anomalies in the behavior of the C66 mode through various magnetic phase transitions permit us to revise the low temperature H-T phase diagrams of this compound.Comment: v2: a discussion of the C44 mode with the comparison to Y borocarbide was adde

    A relativistic quark model for the Omega- electromagnetic form factors

    Full text link
    We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.Comment: 13 pages, 5 figure

    Point Contact Spectroscopy of Superconducting Gap Anisotropy in Nickel Borocarbide Compound LuNi2B2C

    Get PDF
    Point contacts are used to investigate the anisotropy of the superconducting energy gap in LuNi2B2C in the ab plane and along the c axis. It is shown that the experimental curves should be described assuming that the superconducting gap is non-uniformly distributed over the Fermi surface. The largest and the smallest gaps have been estimated by two-gap fitting models. It is found that the largest contribution to the point-contact conductivity in the c direction is made by a smaller gap and, in the ab plane by a larger gap. The deviation from the one-gap BCS model is pronounced in the temperature dependence of the gap in both directions. The temperature range, where the deviation occurs, is for the c direction approximately 1.5 times more than in the ab plane. The \Gamma parameter, allowing quantitatively estimate the gap anisotropy by one-gap fitting, in c direction is also about 1.5 times greater than in the ab plane. Since it is impossible to describe satisfactorily such gap distribution either by the one- or two-gap models, a continuous, dual-maxima model of gap distribution over the Fermi surface should be used to describe superconductivity in this material.Comment: 10 pages, 14 Figs, accepted in PR

    Generalized Parton Distributions and Description of Electromagnetic and Graviton form factors of nucleon

    Full text link
    The new parameterization of the generalized parton distributions t-dependence is proposed. It allows one to reproduce sufficiently well the electromagnetic form factors of the proton and neutron at small and large momentum transfer. The description of the data obtained by the Rosenbluth method and the polarization method are compared. The results obtained by the latter method are shown to be compatible with the correspondent neutron data. The impact parameter dependence of the neutron charge density is examined. The quark contributions to gravitational form factors of the nucleons are obtained.Comment: 9 pages, 19 figures, typos corrected, 1 fig redro

    Radiation hydrodynamics of SN 1987A: I. Global analysis of the light curve for the first 4 months

    Full text link
    The optical/UV light curves of SN 1987A are analyzed with the multi-energy group radiation hydrodynamics code STELLA. The calculated monochromatic and bolometric light curves are compared with observations shortly after shock breakout, during the early plateau, through the broad second maximum, and during the earliest phase of the radioactive tail. We have concentrated on a progenitor model calculated by Nomoto & Hashimoto and Saio, Nomoto, & Kato, which assumes that 14 solar masses of the stellar mass is ejected. Using this model, we have updated constraints on the explosion energy and the extent of mixing in the ejecta. In particular, we determine the most likely range of E/M (explosion energy over ejecta mass) and R_0 (radius of the progenitor). In general, our best models have energies in the range E = (1.1 +/- 0.3) x 10^{51} ergs, and the agreement is better than in earlier, flux-limited diffusion calculations for the same explosion energy. Our modeled B and V fluxes compare well with observations, while the flux in U undershoots after about 10 days by a factor of a few, presumably due to NLTE and line transfer effects. We also compare our results with IUE observations, and a very good quantitative agreement is found for the first days, and for one IUE band (2500-3000 A) as long as for 3 months. We point out that the V flux estimated by McNaught & Zoltowski should probably be revised to a lower value.Comment: 27 pages AASTeX v.4.0 + 35 postscript figures. ApJ, accepte
    corecore