29,411 research outputs found

    The Origin of Large-scale HI structures in the Magellanic Bridge

    Full text link
    We investigate the formation of a number of key large-scale HI features in the ISM of the Magellanic Bridge using dissipationless numerical simulation techniques. This study comprises the first direct comparison between detailed HI maps of the Bridge and numerical simulations. We confirm that the SMC forms two tidal filaments: a near arm, which forms the connection between the SMC and LMC, and a counterarm. We show that the HI of the most dense part of the Bridge can become arranged into a bimodal configuration, and that the formation of a "loop" of HI, located off the North-Eastern edge of the SMC can be reproduced simply as a projection of the counter-arm, and without invoking localised energy-deposition processes such as SNe or stellar winds.Comment: 5 Pages, 4 Figures, Accepted - MNRAS let

    Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse

    Full text link
    We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra, final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are detectable by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan. 2004). Revised version: Corrected typos and minor mistakes in text and references. Minor additions to the text according to the referee's suggestions, conclusions unchange

    3-Dimensional Core-Collapse

    Full text link
    In this paper, we present the results of 3-dimensional collapse simulations of rotating stars for a range of stellar progenitors. We find that for the fastest spinning stars, rotation does indeed modify the convection above the proto-neutron star, but it is not fast enough to cause core fragmentation. Similarly, although strong magnetic fields can be produced once the proto-neutron star cools and contracts, the proto-neutron star is not spinning fast enough to generate strong magnetic fields quickly after collapse and, for our simulations, magnetic fields will not dominate the supernova explosion mechanism. Even so, the resulting pulsars for our fastest rotating models may emit enough energy to dominate the total explosion energy of the supernova. However, more recent stellar models predict rotation rates that are much too slow to affect the explosion, but these models are not sophisticated enough to determine whether the most recent, or past, stellar rotation rates are most likely. Thus, we must rely upon observational constraints to determine the true rotation rates of stellar cores just before collapse. We conclude with a discussion of the possible constraints on stellar rotation which we can derive from core-collapse supernovae.Comment: 34 pages (5 of 17 figures missing), For full paper, goto http://qso.lanl.gov/~clf/papers/rot.ps.gz accepted by Ap

    Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning

    Get PDF
    By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM) code PROMETHEUS, we study the properties of a convective oxygen burning shell in a SN 1987A progenitor star prior to collapse. The convection is too heterogeneous and dynamic to be well approximated by one-dimensional diffusion-like algorithms which have previously been used for this epoch. Qualitatively new phenomena are seen. The simulations are two-dimensional, with good resolution in radius and angle, and use a large (90-degree) slice centered at the equator. The microphysics and the initial model were carefully treated. Many of the qualitative features of previous multi-dimensional simulations of convection are seen, including large kinetic and acoustic energy fluxes, which are not accounted for by mixing length theory. Small but significant amounts of carbon-12 are mixed non-uniformly into the oxygen burning convection zone, resulting in hot spots of nuclear energy production which are more than an order of magnitude more energetic than the oxygen flame itself. Density perturbations (up to 8%) occur at the `edges' of the convective zone and are the result of gravity waves generated by interaction of penetrating flows into the stable region. Perturbations of temperature and electron fraction at the base of the convective zone are of sufficient magnitude to create angular inhomogeneities in explosive nucleosynthesis products, and need to be included in quantitative estimates of yields. Combined with the plume-like velocity structure arising from convection, the perturbations will contribute to the mixing of nickel-56 throughout supernovae envelopes. Runs of different resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see http://www.astrophysics.arizona.edu/movies.html Submitted to the Astrophysical Journa

    Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development

    Get PDF
    <p>Background: Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target.</p> <p>Methods: The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated.</p> <p>Results: No growth defect under low and elevated oxygen tension, no up-or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10(Delta gdha) parasite lines. Further, the fate of the carbon skeleton of [(13)C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of a-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites.</p> <p>Conclusions: First, the data support the conclusion that D10(Delta gdha) parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra-erythrocytic parasite development.</p&gt

    The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions

    Get PDF
    peer-reviewedA field study was conducted to determine the effect of the nitrification inhibitor dicyandiamide (DCD) on N2O and N2 emissions after cattle slurry (CS) application in the presence of nitrate (NO3) fertiliser on seven different occasions (between March 2009 and March 2011). N2O emissions from CS in the presence of NO3 fertiliser were very high (0.4–8.7% of applied N) over a 20-day period, under mild moist conditions. Emissions were significantly larger from the CS treatment compared to an NH4+-N source, supplying the same rate of N as in the slurry. This study supports the view that organic fertilisers should not be applied at the same time as nitrate-based fertilisers, as significant increases in N2O emissions occur. The average N2O mole fraction (N2O/(N2O + N2)) over all seven application dates was 0.34 for CSNO3 compared to 0.24 for the NH4ClNO3 treatment, indicating the dominance of N2 emissions. The rate of nitrification in CSNO3 was slower than in NH4ClNO3, and DCD was found to be an effective nitrification inhibitor in both treatments. However, as N2O emissions were found to be predominantly associated with the NO3 pool, the effect of DCD in lowering N2O emissions is limited in the presence of a NO3 fertiliser. To obtain the maximum cost-benefit of DCD in lowering N2O emissions, under mild moist conditions, it should not be applied to a nitrate containing fertiliser (e.g. ammonium nitrate or calcium ammonium nitrate), and therefore the application of DCD should be restricted to ammonium-based organic or synthetic fertilisers.This research was funded by the Irish National Development Plan, through the Research Stimulus Fund (RSF 07 519), administered by the Irish Department of Agriculture, Food and the Marine

    Local Ferroelectricity in SrTiO_3 Thin Films

    Full text link
    The temperature-dependent polarization of SrTiO_3 thin films is investigated using confocal scanning optical microscopy. A homogeneous out-of-plane and inhomogeneous in-plane ferroelectric phase are identified from images of the linear electrooptic response. Both hysteretic and non-hysteretic behavior are observed under a dc bias field. Unlike classical transitions in bulk ferroelectrics, local ferroelectricity is observed at temperatures far above the dielectric permittivity maximum. The results demonstrate the utility of local probe experiments in understanding inhomogeneous ferroelectrics.Comment: 8 pages, 3 figures, accepted for publication in PR

    LSST optical beam simulator

    Full text link
    We describe a camera beam simulator for the LSST which is capable of illuminating a 60mm field at f/1.2 with realistic astronomical scenes, enabling studies of CCD astrometric and photometric performance. The goal is to fully simulate LSST observing, in order to characterize charge transport and other features in the thick fully depleted CCDs and to probe low level systematics under realistic conditions. The automated system simulates the centrally obscured LSST beam and sky scenes, including the spectral shape of the night sky. The doubly telecentric design uses a nearly unit magnification design consisting of a spherical mirror, three BK7 lenses, and one beam-splitter window. To achieve the relatively large field the beam-splitter window is used twice. The motivation for this LSST beam test facility was driven by the need to fully characterize a new generation of thick fully-depleted CCDs, and assess their suitability for the broad range of science which is planned for LSST. Due to the fast beam illumination and the thick silicon design [each pixel is 10 microns wide and over 100 microns deep] at long wavelengths there can be effects of photon transport and charge transport in the high purity silicon. The focal surface covers a field more than sufficient for a 40x40 mm LSST CCD. Delivered optical quality meets design goals, with 50% energy within a 5 micron circle. The tests of CCD performance are briefly described.Comment: 9 pages, 9 figure
    • 

    corecore