35,251 research outputs found

    Sequential Sparsening by Successive Adaptation in Neural Populations

    Get PDF
    In the principal cells of the insect mushroom body, the Kenyon cells (KC), olfactory information is represented by a spatially and temporally sparse code. Each odor stimulus will activate only a small portion of neurons and each stimulus leads to only a short phasic response following stimulus onset irrespective of the actual duration of a constant stimulus. The mechanisms responsible for the sparse code in the KCs are yet unresolved. Here, we explore the role of the neuron-intrinsic mechanism of spike-frequency adaptation (SFA) in producing temporally sparse responses to sensory stimulation in higher processing stages. Our single neuron model is defined through a conductance-based integrate-and-fire neuron with spike-frequency adaptation [1]. We study a fully connected feed-forward network architecture in coarse analogy to the insect olfactory pathway. A first layer of ten neurons represents the projection neurons (PNs) of the antenna lobe. All PNs receive a step-like input from the olfactory receptor neurons, which was realized by independent Poisson processes. The second layer represents 100 KCs which converge onto ten neurons in the output layer which represents the population of mushroom body extrinsic neurons (ENs). Our simulation result matches with the experimental observations. In particular, intracellular recordings of PNs show a clear phasic-tonic response that outlasts the stimulus [2] while extracellular recordings from KCs in the locust express sharp transient responses [3]. We conclude that the neuron-intrinsic mechanism is can explain a progressive temporal response sparsening in the insect olfactory system. Further experimental work is needed to test this hypothesis empirically. [1] Muller et. al., Neural Comput, 19(11):2958-3010, 2007. [2] Assisi et. al., Nat Neurosci, 10(9):1176-1184, 2007. [3] Krofczik et. al. Front. Comput. Neurosci., 2(9), 2009.Comment: 5 pages, 2 figures, This manuscript was submitted for review to the Eighteenth Annual Computational Neuroscience Meeting CNS*2009 in Berlin and accepted for oral presentation at the meetin

    GLUMIP 2.0: SAS/IML Software for Planning Internal Pilots

    Get PDF
    Internal pilot designs involve conducting interim power analysis (without interim data analysis) to modify the final sample size. Recently developed techniques have been described to avoid the type~I error rate inflation inherent to unadjusted hypothesis tests, while still providing the advantages of an internal pilot design. We present GLUMIP 2.0, the latest version of our free SAS/IML software for planning internal pilot studies in the general linear univariate model (GLUM) framework. The new analytic forms incorporated into the updated software solve many problems inherent to current internal pilot techniques for linear models with Gaussian errors. Hence, the GLUMIP 2.0 software makes it easy to perform exact power analysis for internal pilots under the GLUM framework with independent Gaussian errors and fixed predictors.

    Nuclear Matter on a Lattice

    Get PDF
    We investigate nuclear matter on a cubic lattice. An exact thermal formalism is applied to nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin- and isospin-exchange interactions. We describe the nuclear matter Monte Carlo methods which contain elements from shell model Monte Carlo methods and from numerical simulations of the Hubbard model. We show that energy and basic saturation properties of nuclear matter can be reproduced. Evidence of a first-order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. We compare symmetry energy and first sound velocities with literature and find reasonable agreement.Comment: 23 pages, 8 figures (some in color), to be submitted to Phys. Rev.

    Major impact from a minor merger - The extraordinary hot molecular gas flow in the Eye of the NGC 4194 Medusa galaxy

    Get PDF
    Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on supermassive black hole growth and star formation is profound. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales. We use observations of HCN, HCO+1-0 and CO3-2 to study the dense gas properties in the Medusa merger. We calculate the brightness temperature ratios and use them in conjunction with a non-LTE radiative line transfer model. The HCN and HCO+1-0, and CO3-2 emission do not occupy the same structures as the less dense gas associated with the lower-J CO emission. The only emission from dense gas is detected in a 200pc region within the "Eye of the Medusa". No HCN or HCO+ is detected for the extended starburst. The CO3-2/2-1 brightness temperature ratio inside "the Eye" is ~2.5 - the highest ratio found so far. The line ratios reveal an extreme, fragmented molecular cloud population inside "the Eye" with large temperatures (>300K) and high gas densities (>10^4 cm^-3). "The Eye" is found at an interface between a large-scale minor axis inflow and the Medusa central region. The extreme conditions inside "the Eye" may be the result of the radiative and mechanical feedback from a deeply embedded, young, massive super star cluster, formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form new stars. Thus, caution is advised in linking the detection of emission from dense gas tracers to evidence of ongoing or imminent star formation.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in A&

    Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse

    Full text link
    We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra, final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are detectable by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan. 2004). Revised version: Corrected typos and minor mistakes in text and references. Minor additions to the text according to the referee's suggestions, conclusions unchange

    KLOE results at the Frascati ϕ\phi-factory DAΦ\PhiNE

    Full text link
    The KLOE experiment at the Frascati ϕ\phi-factory DAΦ\PhiNE has collected about 0.5 fb1^{-1} of data till the end of the year 2002. These data allow to perform a wide physics program, ranging from the physics of charged and neutral kaons to radiative ϕ\phi-decays. Results are presented for the KLK_L lifetime and the semileptonic processes KS,LπeνK_{S,L} \to \pi e \nu. From the light meson spectroscopy program, results on the decays ϕf0(980)γ,a0(980)γ\phi \to f_0(980)\gamma, a_0(980)\gamma as well as ϕηγ,ηγ\phi \to \eta \gamma, \eta' \gamma are presented.Comment: 5 pages, 3 figures, Proceedings contribution to the 10th Int. Symposium on "Meson-Nucleon Physics and the Structure of the Nucleon" (MENU04), Beijing, China, Aug. 30 - Sept. 4, 200

    Jet Modification in a Brick of QGP Matter

    Full text link
    We have implemented the LPM effect into a microscopic transport model with partonic degrees of freedom by following the algorithm of Zapp & Wiedemann. The Landau-Pomeranchuk-Migdal (LPM) effect is a quantum interference process that modifies the emission of radiation in the presence of a dense medium. In QCD this results in a quadratic length dependence for radiative energy loss. This is an important effect for the modification of jets by their passage through the QGP. We verify the leading parton energy loss in the model against the leading order Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov (BDMPS-Z) result. We apply our model to the recent observations of the modification of di-jets at the LHC.Comment: Presented at Panic 1

    A survey of HC_3N in extragalactic sources: Is HC_3N a tracer of activity in ULIRGs?

    Get PDF
    Context. HC_3N is a molecule that is mainly associated with Galactic star-forming regions, but it has also been detected in extragalactic environments. Aims. To present the first extragalactic survey of HC_3N, when combining earlier data from the literature with six new single-dish detections, and to compare HC_3N with other molecular tracers (HCN, HNC), as well as other properties (silicate absorption strength, IR flux density ratios, C_(II) flux, and megamaser activity). Methods. We present mm IRAM 30 m, OSO 20 m, and SEST observations of HC_3N rotational lines (mainly the J = 10–9 transition) and of the J = 1–0 transitions of HCN and HNC. Our combined HC_3N data account for 13 galaxies (excluding the upper limits reported for the non-detections), while we have HCN and HNC data for more than 20 galaxies. Results. A preliminary definition “HC_3N-luminous galaxy” is made based upon the HC_3N/HCN ratio. Most (~80%) HC_3N-luminous galaxies seem to be deeply obscured galaxies and (U)LIRGs. A majority (~60% or more) of the HC3N-luminous galaxies in the sample present OH mega- or strong kilomaser activity. A possible explanation is that both HC_3N and OH megamasers need warm dust for their excitation. Alternatively, the dust that excites the OH megamaser offers protection against UV destruction of HC_3N. A high silicate absorption strength is also found in several of the HC_3N-luminous objects, which may help the HC3N to survive. Finally, we find that a high HC_3N/HCN ratio is related to a high dust temperature and a low C_(II) flux
    corecore