5 research outputs found

    Human Milk Antibody Response After Combining Two Different COVID-19 Vaccines: Mix-and-Match

    No full text
    Background: SARS-CoV-2-specific antibodies are secreted into human milk after women are vaccinated against COVID-19, which might protect the breastfed infant. Due to several reports of severe side-effects of the Oxford-AstraZeneca ChAdOx1 (AZD1222) vaccine against COVID-19, some lactating women followed a heterologous vaccination schedule consisting of the first dose of AZD1222 and a second dose of an mRNA-based vaccine. However, it is unclear whether this generates a significant SARS-CoV-2-specific antibody response in human milk. Main Issue: To quantify the SARS-CoV-2-specific antibody response in human milk of two lactating women receiving a heterologous vaccination schedules: AZD1222 and mRNA-based vaccine (Pfizer-BioNTech [BNT162b2] and Moderna [mRNA-1273]). Management: Both participants collected 16 samples of human milk longitudinally. SARS-CoV-2-specific Immunoglobulin A was measured using an enzyme-linked immunosorbent assay. Conclusion: Based on our results, it could be suggested that heterologous vaccination with AZD1222 and an mRNA-based vaccine can elicit a significant SARS-CoV-2 specific IgA response in human milk

    Comparing the SARS-CoV-2-specific antibody response in human milk after homologous and heterologous booster vaccinations

    Get PDF
    Human milk contains SARS-CoV-2-specific antibodies after COVID-19 vaccination. These milk antibodies decrease several months post-vaccination. Whether booster immunization restores human milk antibody levels, potentially offering prolonged passive immunity for the infant, remains unknown. In this prospective follow-up study, we investigated the longitudinal SARS-CoV-2-specific antibody response in human milk of 26 lactating women who received a COVID-19 booster dose of an mRNA-based vaccine. Moreover, we evaluated whether the booster-induced human milk antibody response differs for participants who received a similar or different vaccine type in their primary vaccination series. All participants (100%) who received a homologous booster vaccination showed SARS-CoV-2-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) in their milk. Heterologous booster vaccination resulted in milk conversion for 9 (69%) and 13 (100%) participants for IgA and IgG respectively. Findings of this study indicate that both homologous and heterologous boosting schedules have the potential to enhance SARS-CoV-2-specific IgA and IgG in human milk

    The Levels of SARS-CoV-2 Specific Antibodies in Human Milk Following Vaccination

    Get PDF
    Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are being administered around the world; however, lactating women were excluded from SARS-CoV-2 vaccine trials. Therefore, knowledge about the effect of vaccination in this specific group is limited. This information is essential to empower lactating women to make a well-informed decision on their choice for vaccination. After natural infection, SARS-CoV-2 specific antibodies are present in human milk, which might offer protection for her newborn. The dynamics of these antibodies in human milk following vaccination remain to be elucidated. Research Aim: To determine the effect of vaccination with BNT162b2 on the levels of SARS-CoV-2 specific IgA in human milk. Methods: In this prospective longitudinal study, we included lactating women who received the BNT162b2 vaccine. Human milk samples were collected prior to vaccination and 3, 5, 7, 9, 11, 13, and 15 days after both vaccine doses. Samples were analyzed using enzyme-linked immunosorbent assay against the spike protein of SARS-CoV-2. Results: In total, 366 human milk samples from 26 lactating women were analyzed. A biphasic response was observed, with SARS-CoV-2 specific immunoglobulin A (IgA) starting to increase between day 5 and 7 after the first dose of the vaccine. After the second dose, an accelerated IgA antibody response was observed. Conclusion: After vaccination with the mRNA-based BNT162b2 vaccine, a SARS-CoV-2 specific antibody response was observed in human milk. The presence of SARS-CoV-2 specific IgA after vaccination is important as antibodies are transferred via human milk, and thereby might provide protection to infants against COVID-19

    Comparing the human milk antibody response after vaccination with four COVID-19 vaccines: A prospective, longitudinal cohort study in the Netherlands

    No full text
    Background: Vaccination of lactating women against COVID-19 may protect not only themselves but also their breastfed infant through human milk. Therefore, it is important to gain insight into the human milk antibody response after immunization with the various vaccines that are currently widely used. The aim of this study is to determine and compare the antibody response in human milk following vaccination with mRNA- and vector-based vaccines up to over two months post-vaccination. Methods: This prospective cohort study was conducted in the Netherlands between January 06, 2021 and July 31, 2021. Participants were recruited through social media. Human milk samples were collected longitudinally during a period of 70 days from women receiving one of the four different severe acute respiratory coronavirus 2 (SARS-CoV-2) vaccines: Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), Oxford/AstraZeneca (AZD1222) and Johnson&Johnson (Ad26.COV2.S). SARS-CoV-2-specific antibodies were measured using an enzyme-linked immunosorbent assay. The area under the curve (AUC) of the Immunoglobulins A (IgA) and G (IgG) antibody response was determined over 15 and 70 days following the first vaccination and compared between the different vaccines. Findings: This study enrolled 134 vaccinated lactating women of whom 97 participated the entire study period. In total, 1887 human milk samples were provided. The human milk antibody response differed between SARS-CoV-2 vaccines over the study period. The mean AUC of SARS-CoV-2-specific IgA, but not IgG, in human milk over 15 days was higher after vaccination with an mRNA-based vaccine than a vector-based vaccine (AUC with respect to ground [AUCg] 卤 the standard error of the mean [SEM] for IgA was 6路09 卤 0路89 in the BNT162b2 group, 7路48 卤 1路03 in the mRNA-1273 group, 4路17 卤 0路73 in the AZD1222 group, and 5路71 卤 0路70 in the Ad26.COV2.S group). Over a period of 70 days, the mean AUCg of both IgA and IgG was higher after vaccination with an mRNA-based vaccine than a vector-based vaccine (AUCg 卤 SEM for IgA was 38路77 卤 6路51 in the BNT162b2 group, 50路13 卤 7路41 in the mRNA-1273 group, 24路12 卤 5路47 in the AZD1222 group, and 28路15 卤 6路69 in the Ad26.COV2.S group; AUCg 卤 SEM for IgG was 40路43 卤 2路67 in the BNT162b2 group, 37路01 卤 2路38 in the mRNA-1273 group, 16路04 卤 5路09 in the AZD1222 group, and 10路44 卤 2路50 in the Ad26.COV2.S group). Interpretation: Overall, maternal vaccination during lactation with an mRNA-based vaccine resulted in higher SARS-CoV-2 antibody responses in human milk compared to vector-based vaccines. Therefore, vaccination with mRNA-based vaccines, preferably with the mRNA-1273 vaccine, might not only provide better immunological protection for the mother but also for her breastfed infant. Funding: Stichting Steun Emma Kinderziekenhuis and the Amsterdam Infection and Immunity Institute (grant 24175)
    corecore